A novel workflow for the qualitative analysis of DNA methylation data.

Antonella Sarnataro, Giulia De Riso, Sergio Cocozza, Antonio Pezone, Barbara Majello, Stefano Amente, Giovanni Scala
Author Information
  1. Antonella Sarnataro: Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy.
  2. Giulia De Riso: Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy.
  3. Sergio Cocozza: Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy.
  4. Antonio Pezone: Department of Biology, University of Naples "Federico II", Naples, Italy.
  5. Barbara Majello: Department of Biology, University of Naples "Federico II", Naples, Italy.
  6. Stefano Amente: Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy.
  7. Giovanni Scala: Department of Biology, University of Naples "Federico II", Naples, Italy.

Abstract

DNA methylation is an epigenetic modification that plays a pivotal role in major biological mechanisms, such as gene regulation, genomic imprinting, and genome stability. Different combinations of methylated cytosines for a given DNA locus generate different epialleles and alterations of these latter have been associated with several pathological conditions. Existing computational methods and statistical tests relevant to DNA methylation analysis are mostly based on the comparison of average CpG sites methylation levels and they often neglect non-CG methylation. Here, we present EpiStatProfiler, an R package that allows the analysis of CpG and non-CpG based epialleles starting from bisulfite sequencing data through a collection of dedicated extraction functions and statistical tests. EpiStatProfiler is provided with a set of useful auxiliary features, such as customizable genomic ranges, strand-specific epialleles analysis, locus annotation and gene set enrichment analysis. We showcase the package functionalities on two public datasets by identifying putative relevant loci in mice harboring the Huntington's disease-causing Htt gene mutation and in Ctcf +/- mice compared to their wild-type counterparts. To our knowledge, EpiStatProfiler is the first package providing functionalities dedicated to the analysis of epialleles composition derived from any kind of bisulfite sequencing experiment.

Keywords

References

  1. Mol Cell. 2017 Sep 21;67(6):1049-1058.e6 [PMID: 28938092]
  2. Nat Genet. 2009 Feb;41(2):178-186 [PMID: 19151715]
  3. J Huntingtons Dis. 2020;9(3):217-229 [PMID: 32925079]
  4. Nucleic Acids Res. 2005 Oct 13;33(18):5868-77 [PMID: 16224102]
  5. Cancers (Basel). 2021 Apr 09;13(8): [PMID: 33918773]
  6. Brief Funct Genomics. 2016 Nov;15(6):443-453 [PMID: 27416614]
  7. Genes Dis. 2018 Jan 31;5(1):1-8 [PMID: 30258928]
  8. Nat Ecol Evol. 2021 Mar;5(3):369-378 [PMID: 33462491]
  9. Bioinformatics. 2021 Jun 19;: [PMID: 34179956]
  10. NAR Genom Bioinform. 2020 Nov 16;2(4):lqaa096 [PMID: 33575640]
  11. Nucleic Acids Res. 2017 Sep 6;45(15):8822-8834 [PMID: 28605464]
  12. Mol Cell. 2021 Mar 18;81(6):1260-1275.e12 [PMID: 33561390]
  13. J Biol Chem. 2009 Jul 3;284(27):18167-73 [PMID: 19433866]
  14. Aging (Albany NY). 2016 Jul;8(7):1485-512 [PMID: 27479945]
  15. Nucleic Acids Res. 2019 Jul 2;47(W1):W191-W198 [PMID: 31066453]
  16. Trends Mol Med. 2013 Nov;19(11):655-63 [PMID: 23953480]
  17. Cell Biosci. 2019 Oct 11;9:83 [PMID: 31632638]
  18. Nat Genet. 2012 Nov;44(11):1207-14 [PMID: 23064413]
  19. Neurology. 2020 May 5;94(18):e1908-e1915 [PMID: 32265233]
  20. Nat Commun. 2020 Oct 16;11(1):5238 [PMID: 33067439]
  21. Epigenetics. 2016 Dec;11(12):881-888 [PMID: 27748645]
  22. Mol Neurobiol. 2018 Apr;55(4):3351-3371 [PMID: 28497201]
  23. Genome Biol. 2012 Oct 03;13(10):R87 [PMID: 23034086]
  24. Bioinformatics. 2015 Jul 15;31(14):2382-3 [PMID: 25765347]
  25. Genes (Basel). 2019 Mar 29;10(4): [PMID: 30934924]
  26. Nat Commun. 2020 Sep 10;11(1):4529 [PMID: 32913184]
  27. Free Radic Biol Med. 2012 Nov 15;53(10):1857-67 [PMID: 22982598]
  28. BMC Bioinformatics. 2016 Nov 25;17(1):484 [PMID: 27884103]
  29. J Vis Exp. 2015 Feb 24;(96): [PMID: 25741966]
  30. Nat Rev Genet. 2013 Mar;14(3):204-20 [PMID: 23400093]
  31. Genome Biol. 2014 Sep 27;15(9):472 [PMID: 25260792]
  32. Bioinformatics. 2019 Jul 15;35(14):i520-i529 [PMID: 31510697]
  33. Nat Rev Genet. 2012 May 29;13(7):484-92 [PMID: 22641018]
  34. Cancer Cell. 2014 Dec 8;26(6):813-825 [PMID: 25490447]
  35. Nucleic Acids Res. 2020 May 7;48(8):e46 [PMID: 32103242]
  36. BMC Bioinformatics. 2017 Jul 25;18(1):354 [PMID: 28743252]

Word Cloud

Created with Highcharts 10.0.0methylationanalysisDNAepiallelesgeneEpiStatProfilerpackagesequencinggenomiclocusstatisticaltestsrelevantbasedCpGbisulfitedatadedicatedsetfunctionalitiesmiceepigeneticmodificationplayspivotalrolemajorbiologicalmechanismsregulationimprintinggenomestabilityDifferentcombinationsmethylatedcytosinesgivengeneratedifferentalterationslatterassociatedseveralpathologicalconditionsExistingcomputationalmethodsmostlycomparisonaveragesiteslevelsoftenneglectnon-CGpresentRallowsnon-CpGstartingcollectionextractionfunctionsprovidedusefulauxiliaryfeaturescustomizablerangesstrand-specificannotationenrichmentshowcasetwopublicdatasetsidentifyingputativelociharboringHuntington'sdisease-causingHttmutationCtcf+/-comparedwild-typecounterpartsknowledgefirstprovidingcompositionderivedkindexperimentnovelworkflowqualitativeBisulfiteCGEpiallelesEpigeneticsNon-CG

Similar Articles

Cited By (1)