Histopathological and Biochemical Changes in the Gills of Anabas testudineus on Exposure to Polycyclic Aromatic Hydrocarbon Naphthalene.

Susri Nayak, Lipika Patnaik
Author Information
  1. Susri Nayak: Environmental Science Laboratory, Department of Zoology, Centre of Excellence in Environment and Public Health, Ravenshaw University, Cuttack, 753008, Odisha, India.
  2. Lipika Patnaik: Environmental Science Laboratory, Department of Zoology, Centre of Excellence in Environment and Public Health, Ravenshaw University, Cuttack, 753008, Odisha, India. lipika_pat@yahoo.co.uk. ORCID

Abstract

Naphthalene, a polycyclic aromatic hydrocarbon, is generated by various distillation, petroleum, and coal-tar production units and is used worldwide as mothballs, soil fumigants, and toilet deodorants. Considering the susceptibility of aquatic animals to different types of stressors in several water bodies, this study was carried out to evaluate the impact of naphthalene on the architecture of gill tissue including response of various enzymes like cholinesterase (ChE) activity, lactate dehydrogenase (LDH) activity, and lipid peroxidation (LPX) level of the freshwater fish Anabas testudineus. Activities of antioxidants like catalase (CAT), glutathione peroxidase (GPx), and glutathione (GSH) were also evaluated. Constant loss of gill structure and secondary lamellar fusion was observed in fishes exposed to various concentrations of naphthalene. ChE, LDH, LPx, CAT, Gpx and GSH activities indicated significant variation (p < 0.05) between the control and experimental groups. ChE activity was lowered in experimental fishes; however, LDH activity, LPx levels, and CAT activity were elevated in response to various concentrations of naphthalene as compared to control group. Both GPx and GSH activities decreased in the gill tissue of the experimental fishes. Thus, a conclusion was drawn that naphthalene is a potent toxicant capable of inflicting tissue damage leading to physiological changes in the exposed fishes.

Keywords

References

  1. Ahmed, M. K., Al-Mamun, M. H., Parvin, E., Akter, M. S., & Khan, M. S. (2013). Arsenic induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, Tilapia (Oreochromis mossambicus). Experimental and Toxicologic Pathology, 65(6), 903–909. [PMID: 23375191]
  2. Ahmed, O., & Mastan, S. A. (2015). RabiabanuS, Indira P, Sub lethal effect of cypermethrin on acetylcholinesterase (AChE) activity and acetylcholine (Ach) content in selected tissues of Channa striatus (Bloch.). Journal of Toxicology and Environmental Health Sciences, 7(4), 31–37. [DOI: 10.5897/JTEHS2015.0334]
  3. Aly, S. T., Kanaan, D. M., El-Dieb, A. S., Abu-Eishah, S. I. (2018) Properties of ceramic waste powder-based geopolymer concrete, In International Congress on Polymers in Concrete (pp. 429–435), Springer, Cham
  4. APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association (16th ed.). New York, USA
  5. Badreddine, S., Abdelhafidh, K., Dellali, M., Mahmoudi, E., Sheehan, D., & Hamouda, B. (2017). The effects of anthracene on biochemical responses of Mediterranean mussels Mytilus galloprovincialis. Chemical Ecology, 33(4), 309–324. [DOI: 10.1080/02757540.2017.1309393]
  6. Balakumaran, M., Cyril, X., Ponmathan, K. P., Praveen, K. J., & Ganesh, K. M. (2015). Comparative studies on floor tiles using geopolymer concrete and cement concrete. International Journal of Engineering Research, 3(11), 1–4.
  7. Bassey, B. O. (2019). Histopathological and biochemical response of Chrysichthys nigrodigitatus to environmental stressors from two polluted lagoons, Southwest Nigeria. Journal of Toxicology and Risk Assessment, 5, 5–25.
  8. Baussant, T., Sanni, S., Skadsheim, A., Jonsson, G., Børseth, J. F., & Gaudebert, B. (2001). Bioaccumulation of polycyclic aromatic compounds: 2. Modeling bioaccumulation in marine organisms chronically exposed to dispersed oil. Environmental Toxicology Chemistry: An International Journal, 20(6), 1185–1195.
  9. Beliaeff, B., & Burgeot, T. (2002). Integrated biomarker response: a useful tool for ecological risk assessment. Environmental Toxicology and Chemistry: An International Journal, 21(6), 1316–1322.
  10. Bhagat, J., Ingole, B. S., & Shyama, S. K. (2017). Effects of benzo (k) fluoranthene, a polycyclic aromatic hydrocarbon on DNA damage, lipid peroxidation and oxidative stress in marine gastropod Morula granulate. Chemical Ecology, 33(9), 869–882. [DOI: 10.1080/02757540.2017.1384470]
  11. Bhagat, J., Sarkar, A., & Ingole, B. S. (2016). DNA damage and oxidative stress in marine gastropod Morula granulata exposed to phenanthrene. Water, Air, and Soil pollution, 227(4), 114. [DOI: 10.1007/s11270-016-2815-1]
  12. Brandão, F. P., Pereira, J. L., Gonçalves, F., & Nunes, B. (2011). The impact of paracetamol on selected biomarkers of the mollusc species Corbicula fluminea. Environmental Toxicology, 29, 74–83. [PMID: 21956867]
  13. Broeg, K., & Lehtonen, K. K. (2006). Indices for the assessment of environmental pollution of the Baltic Sea coasts: Integrated assessment of a multi-biomarker approach. Marine Pollution Bulletin, 53(8–9), 508–522. [PMID: 16737720]
  14. Dange, A. D., & Masurekar, V. B. (1980). Toluene toxicity: Effects of sublethal levels on enzyme activities in seawater adapted tilapia (Sarotherodon mossambicus Peters). Journal of Biosciences, 3(2), 129–134. [DOI: 10.1007/BF02702655]
  15. Deb, S. C., Araki, T., & Fukushima, T. (2000). Polycyclic aromatic hydrocarbons in fish organs. Marine Pollution Bulletin, 40(10), 882–885. [DOI: 10.1016/S0025-326X(00)00090-4]
  16. Dey, R., Biswas, C., & Chaudhuri, M. G. (2017). Effect of naphthalene on reduction characteristics of iron ore nuggets using boiler grade cola. MGMI Transactions, 113, 33–49.
  17. Dey, S., Ballav, P., Manda, A., Samanta, P., Patra, A., Das, S., & Ghosh, A. R. (2020). Blood biochemical and erythrocytic morpho-pathological consequences of naphthalene intoxication in Indian teleost, Anabas testudineus (Bloch). Environmental Toxicology and Pharmacology, 80, 103490. [PMID: 32911098]
  18. Dey, S., Samanta, P., Pal, S., Mukherjee, A. K., Kole, D., & Ghosh, A. R. (2016). Integrative assessment of biomarker responses in teleostean fishes exposed to glyphosate-based herbicide (Excel Mera 71). Emerg Contam, 2(4), 191–203. [DOI: 10.1016/j.emcon.2016.12.002]
  19. Ellman, G. L. (1959). Tissue sulphydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77. [PMID: 13650640]
  20. Ellman, G. L., Courtney, K. D., Andres, V., & Feather, S. (1961). A new and rapid calorimetric determination of acetyl cholinesterase activity. Biochemical Pharmacology, 7, 88–95. [PMID: 13726518]
  21. Filfilan, W. M., & Aljahdali, M. O. (2019). Histological Changes in the Gills of Marine Cultured Tilapia (Oreochromis spilurus) at Larvae Stage Treated by Phenanthrene. Journal of Aquatic Pollution and Toxicology, 3(1), 24.
  22. Haque, M. N., Eom, H. J., & Rhee, J. S. (2018). Waterborne phenanthrene modulates immune, biochemical, and antioxidant parameters in the bloods of juvenile olive flounder. Toxicology and Environmental Health Sciences, 10(3), 194–202. [DOI: 10.1007/s13530-018-0364-2]
  23. Has-Schön, E., Bogut, I., & Strelec, I. (2006). Heavy metal profile in five fish species included in human diet, domiciled in the end flow of River Neretva (Croatia). Archives of Environmental Contamination and Toxicology, 50(4), 545–551. [PMID: 16453065]
  24. Hesni, M. A., Savari, A., Sohrab, A. D., & Mortazavi, M. S. (2011). Gill histopathological changes in milkfish (Chanos chanos) exposed to acute toxicity of diesel oil. World Applied Sciences Journal, 14(10), 1487–1492.
  25. Jee, J. H., & Kang, J. C. (2005). Biochemical changes of enzymatic defense system after phenanthrene exposure in olive flounder, Paralichthys olivaceus. Physiological Research, 54(585), e591.
  26. Jeheshadevi, A. K., Ramya, T. M., Sridhar, S., & Chandra, J. H. (2014). Histological alterations on the muscle and intestinal tissues of Catla catla exposed to lethal concentrations of naphthalene. International Journal of Applied Engineering Research, 9(2), 159–164.
  27. Jonsson, G., Bechmann, R. K., Bamber, S. D., & Baussant, T. (2004). Bioconcentration, biotransformation, and elimination of polycyclic aromatic hydrocarbons in sheepshead minnows (Cyprinodon variegatus) exposed to contaminated seawater. Environmental Toxicology Chemistry: An International Journal, 23(6), 1538–1548.
  28. Jovanović, P., Žorić, L., Stefanović, I., Džunić, B., Djordjević-Jocić. J., Radenković, M., & Jovanović, M. (2010). Lactate dehydrogenase and oxidative stress activity in primary open-angle glaucoma aqueous humour. Bosnian journal of basic medical sciences, 10(1), 83. 
  29. Kaur, R., & Dua, A. (2015). 96 h LC, behavioural alterations and histopathological effects due to wastewater toxicity in a freshwater fish Channa punctatus. Environmental Science and Pollution Research, 22, 5100–5110. [PMID: 25339528]
  30. Kaur, M., & Jindal, R. (2018). Toxicopathic branchial lesions in grass carp (Ctenopharyngodon idellus) exposed to chlorpyrifos. Bulletin of Environmental Contamination and Toxicology, 100(5), 665–671. [PMID: 29541819]
  31. King, J. (1965) The dehydrogenases or oxidoreductases. Lactate dehydrogenase. Practical Clinical Enzymology, Van Nostrand, D. Co., Ltd., London, pp. 83–93
  32. Kulkarni, B. G., & Masurekar, V. B. (1984). Effects of naphthalene exposure on blood serum enzyme activities in the crab Scylla serrata (Forskal). Indian Journal of Marine Sciences, 13, 97–98.
  33. Livingstone, D. R. (2001). Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin, 42, 656–666. [PMID: 11525283]
  34. Mackay, D., & Fraser, A. (2000). Bioaccumulation of persistent organic chemicals: Mechanisms and models. Environmental Pollution, 110(3), 375–391. [PMID: 15092817]
  35. Majewski, H. S., Klaverkamp, J. F., & Scott, D. P. (1978). Acute lethality, and sub-lethal effects of acetone, ethanol, and propylene glycol on the cardiovascular and respiratory systems of rainbow trout Salmo gairdneri. Water Research, 12(4), 217–221. [DOI: 10.1016/0043-1354(78)90089-1]
  36. Marigoudar, S. R., Ahmed, R. N., & David, M. (2009). Cypermethrin induced: In vivo inhibition of the acetylcholinesterase activity in functionally different tissues of the freshwater teleost, Labeo rohita (Hamilton). Environmental Toxicology and Chemistry, 91(6), 1175–1182. [DOI: 10.1080/02772240802577282]
  37. Mary, S. C. H., Silvan, S., & Elumalai, E. K. (2014). Toxicology study on lead nitrate induced fresh water fish Cirrhinus mrigala(Hamilton). European Journal of Academic Essays, 1(7), 5–8.
  38. Mauryaa, P. K., Malika, D. S., Yadav, K. K., Gupta, N., & Kumar, S. (2018). Haematological and histological changes in fish Heteropneustes fossilis exposed to pesticides from industrial waste water. Human and Ecological Risk Assessment, 25(5), 1251–1278. [DOI: 10.1080/10807039.2018.1482736]
  39. Mehra, S., & Chadha, P. (2020). Bioaccumulation and toxicity of 2-naphthalene sulfonate: An intermediate compound used in textile industry. Toxicology Research, 9(2), 127–136. [PMID: 32440344]
  40. Murali, M., Athif, P., Suganthi, P., Bukhari, A. S., Mohamed, H. E. S., Basu, H., & Singhal, R. K. (2018). Toxicological effect of AlO nanoparticles on histoarchitecture of the freshwater fish Oreochromis mossambicus. Environmental Toxicology and Pharmacology, 59, 74–81. [PMID: 29544187]
  41. Nayak, S., & Patnaik, L. (2021). Role of integrated biomarker response tool for assessment of naphthalene toxicity in Anabas testudineus. Bulletin of Environment Contamination and Toxicology, 106(4), 568–574. [DOI: 10.1007/s00128-020-03093-4]
  42. Nayak, S., Dash, S., Pati, S. S., Priyadarshini, P., & Patnaik, L. (2021). Lipid peroxidation and antioxidant levels in Anabas testudineus (Bloch) under naphthalene (PAH) stress. Aquaculture Research, 52(11), 5739–5749. [DOI: 10.1111/are.15450]
  43. Nayak, S., Raut, D., & Patnaik, L. (2019). Naphthalene induced enzymatic alterations in the liver of climbing perch Anabas testudineus. Journal of Aquatic Biology and Fisheries, 7, 134–141.
  44. Obanya, H. E., Omoarukhe, A., Amaeze, N. H., & Okoroafor, C. U. (2019). Polycyclic aromatic hydrocarbons in Ologe lagoon and effects of Benzo [b] fluoranthene in African Catfish. Journal of Health and Pollution, 9(22).
  45. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358. [PMID: 36810]
  46. Palanikumar, L., Kumaraguru, A. K., Ramakritinan, C. M., & Anand, M. (2012). Biochemical response of anthracene and benzo [a] pyrene in milkfish Chanos chanos. Ecotoxicology and Environmental Safety, 75, 187–197. [PMID: 21944957]
  47. Palanikumar, L., Kumaraguru, A. L., & Ramakritinan, C. M. (2013). Biochemical and genotoxic response of naphthalene to fingerlings of milkfish Chanos chanos. Ecotoxicology, 22(7), 1111–1122. [PMID: 23836361]
  48. Patnaik, L., Raut, D., Panda, D., & Nayak, S. (2016). Naphthalene induced biochemical changes in Anabas testudineus. Journal of Biodiversity and Environmental Sciences, 8(2), 154–158.
  49. Paul, B. N., Chanda, S., Bhowmick, B., Sridhar, N., Saha, G. S., & Giri, S. S. (2017). Nutrient profile of Indian climbing perch, Anabas testudineus. SAARC Journal of Agriculture, 15(1), 99–109. [DOI: 10.3329/sja.v15i1.33156]
  50. Rao, J. V., Shilpanjali, D., Kavitha, P., & Madhavendra, S. S. (2003). Toxic effects of profenofos on tissue acetylcholinesterase and gill morphology in a euryhaline fish Oreochromis mossambicus. Archives of Toxicology, 77(4), 227–232. [DOI: 10.1007/s00204-002-0432-9]
  51. Rodrigues, S., Antunes, S. C., Nunes, B., & Correia, A. T. (2017). Histological alterations in gills and liver of rainbow trout (Oncorhynchus mykiss) after exposure to the antibiotic oxytetracycline. Environmental toxicology and pharmacology, 53, 164–176.
  52. Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. (1973). Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179(4073), 588–590. [PMID: 4686466]
  53. Rubio-Vargas, D. A., de Oliveira Ribeiro, C. A., Neto, F. F., Cordeiro, A. L., Cestari, M. M., de Souza, A. C., ... & Prodocimo, M. M. (2021). Exposure to pollutants present in Iguaçu River Southern Brazil affect the health of Oreochromis niloticus (Linnaeus, 1758): assessment histological, genotoxic and biochemical. Environmental Toxicology and Pharmacology, 87, 103682.
  54. Sahib, I. K. A., Sailatha, D., & Rao, K. R. (1980). Impact of malathion on acetylcholinesterase in the tissues of the fish Tilapia mossambica (Peters)-a time course study. Journal of Biosciences, 2(1), 37–41. [DOI: 10.1007/BF02703131]
  55. Saliu, J. K., & Bawa-Allah, K. A. (2012). Toxicological effects of lead and zinc on the antioxidant enzyme activities of post juvenile Clarias gariepinus. Resources and Environment, 2(1), 21–26. [DOI: 10.5923/j.re.20120201.03]
  56. Samanta, P., Mukherjee, A. K., Pal, S., Kole, D., & Ghosh, A. R. (2016). Toxic effects of glyphosate-based herbicide, Excel Mera 71 on gill, liver, and kidney of Heteropneustes fossilis under laboratory and field conditions. Journal of Microscopy and Ultrastructure, 4, 147–155. [PMID: 30023221]
  57. Samanta, P., Pal, S., Senapati, T., Mukherjee, A. K., & Ghosh, A. R. (2018). Assessment of adverse outcome of Excel Mera 71 in Anabas testudineus by histological and ultrastructural alterations. Aquatic Toxicology, 205, 19–24. [PMID: 30312898]
  58. Shenai, V. A. (2001). Non-ecofriendly textile chemicals and their probable substitutes - An overview. Indian Journal of Fibre & Textile Research, 26, 50–54.
  59. Silva, C., Oliveira, C., Gravato, C., & Almeida, J. R. (2013). Behaviour and biomarkers as tools to assess the acute toxicity of benzo (a) pyrene in the common prawn Palaemon serratus. Marine Environment Research, 90, 39–46. [DOI: 10.1016/j.marenvres.2013.05.010]
  60. Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical biochemistry, 47(2), 389–394.
  61. Sivaram, N. M., Gopal, P. M., Barik, D. (2019) Toxic waste from textile industries. In Energy from toxic organic waste for heat and power generation, (pp. 43–54). Woodhead Publishing
  62. Sogbanmu, T. O., Osibona, A. O., Oguntunde, O. A., & Otitoloju, A. A. (2018). Biomarkers of toxicity in Clarias gariepinus exposed to sublethal concentrations of polycyclic aromatic hydrocarbons. African Journal of Aquatic Science, 43(3), 281–292. [DOI: 10.2989/16085914.2018.1491825]
  63. Stara, A., Zuskova, E., Velisek, J. (2016) Acute toxicity effect of cypermethrin on common carp (Cyprinus carpio), Neuro Endocrinol Letters, (37)1
  64. Tang, J., Zhang, Z., Miao, J., Tian, Y., & Pan, L. (2022). Effects of benzo [a] pyrene exposure on oxidative stress and apoptosis of gill cells of Chlamys farreri in vitro. Environmental Toxicology and Pharmacology, 93, 103867. [PMID: 35483583]
  65. US Environmental Protection Agency (USEPA) (1980). Naphthalene: ambient water quality criteria. Washington DC. 
  66. US Environmental Protection Agency (1982). Naphthalene, health and environmental effects. Profile no. 131. USEPA Office of Solid Waste, Washington DC.
  67. van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 13, 57–149. [PMID: 21782649]
  68. Velmurugan, B., Selvanayagam, M., Cengiz, E. I., & Ugurlu, P. (2015). Scanning electron microscopy study of the gills, scales and erythrocytes of Anabas testudineus upon exposure to chlorpyrifos. Toxicological and Environmental Chemistry, 97(2), 208–220. [DOI: 10.1080/02772248.2015.1041527]
  69. Vijayavel, K., Gomathi, R. D., Durgabhavani, K., & Balasubramanian, M. P. (2004). Sublethal effect of naphthalene on lipid peroxidation and antioxidant status in the edible marine crab Scylla serrata. Marine Pollution Bulletin, 48(5–6), 429–433. [PMID: 14980458]
  70. Yazdani, M. (2020). Comparative toxicity of selected PAHs in rainbow trout hepatocytes: Genotoxicity, oxidative stress and cytotoxicity. Drug and Chemical Toxicology, 43(1), 71–78. [PMID: 30246564]
  71. Zhang, Y. M. , Guo, G. Z., La Zhang, L., Song, J. H. (2019) Synthesis, analysis and application of naphthalene sulfonic acid formaldehyde condensate, In IOP Conference Series: Earth and Environmental Science,237(2), IOP Publishing
  72. Zhu, L., Tang, X., Wang, Y., Sui, Y., & Xiao, H. (2016). Use of antioxidant enzymes of clam Ruditapes philippinarum as biomarker to polycyclic aromatic hydrocarbon pollution. Chinese Journal of Oceanology and Limnology, 34(2), 416–442. [DOI: 10.1007/s00343-015-4327-z]

Grants

  1. F.No. 33/2012/University Grants Commission
  2. S-SCST-MISC-0054-2018-1152/DST, Odisha Biju Patnaik Fellowship
  3. HE-PTC-WB02017/OHEPEE

MeSH Term

Animals
Gills
Polycyclic Aromatic Hydrocarbons
Fishes
Antioxidants
Catalase
Glutathione
Lipid Peroxidation
Naphthalenes
Oxidative Stress
Glutathione Peroxidase

Chemicals

Polycyclic Aromatic Hydrocarbons
Antioxidants
Catalase
Glutathione
naphthalene
Naphthalenes
Glutathione Peroxidase

Word Cloud

Created with Highcharts 10.0.0activityvariousnaphthalenefishesNaphthalenegilltissueChELDHAnabastestudineusCATGSHexperimentalresponselikedehydrogenaseperoxidationglutathioneGPxexposedconcentrationsLPxactivitiescontrolpolycyclicaromatichydrocarbongenerateddistillationpetroleumcoal-tarproductionunitsusedworldwidemothballssoilfumigantstoiletdeodorantsConsideringsusceptibilityaquaticanimalsdifferenttypesstressorsseveralwaterbodiesstudycarriedevaluateimpactarchitectureincludingenzymescholinesteraselactatelipidLPXlevelfreshwaterfishActivitiesantioxidantscatalaseperoxidasealsoevaluatedConstantlossstructuresecondarylamellarfusionobservedGpxindicatedsignificantvariationp < 005groupsloweredhoweverlevelselevatedcomparedgroupdecreasedThusconclusiondrawnpotenttoxicantcapableinflictingdamageleadingphysiologicalchangesHistopathologicalBiochemicalChangesGillsExposurePolycyclicAromaticHydrocarbonCholinesteraseGilltissuesLactateLipid

Similar Articles

Cited By