Passive Bioaerosol Samplers: A Complementary Tool for Bioaerosol Research. A Review.

Sydonia Manibusan, Gediminas Mainelis
Author Information
  1. Sydonia Manibusan: Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, New Jersey 08901-8551, USA.
  2. Gediminas Mainelis: Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, New Jersey 08901-8551, USA.

Abstract

Bioaerosols consist of airborne particles of biological origin. They play an important role in our environment and may cause negative health effects. The presence of biological aerosol is typically determined using active samplers. While passive bioaerosol samplers are used much less frequently in bioaerosol investigations, they offer certain advantages, such as simple design, low cost, and long sampling duration. This review discusses different types of passive bioaerosol samplers, including their collection mechanisms, advantages and disadvantages, applicability in different sampling environments, and available sample elution and analysis methods. Most passive samplers are based on gravitational settling and electrostatic capture mechanism or their combination. We discuss the agar settle plate, dustfall collector, Personal Aeroallergen Sampler (PAAS), and settling filters among the gravity-based samplers. The described electrostatics-based samplers include electrostatic dust cloths (EDC) and Rutgers Electrostatic Passive Sampler (REPS). In addition, the review also discusses passive opportunity samplers using preexisting airflow, such as filters in HVAC systems. Overall, passive bioaerosol sampling technologies are inexpensive, easy to operate, and can continuously sample for days and even weeks which is not easily accomplished by active sampling devices. Although passive sampling devices are usually treated as qualitative tools, they still provide information about bioaerosol presence and diversity, especially over longer time scales. Overall, this review suggests that the use of passive bioaerosol samplers alongside active collection devices can aid researchers in developing a more comprehensive understanding of biological presence and dynamics, especially over extended time scales and multiple locations.

Keywords

References

  1. Int J Hyg Environ Health. 2016 Jan;219(1):79-87 [PMID: 26424445]
  2. J Hosp Infect. 2000 Dec;46(4):241-56 [PMID: 11170755]
  3. Microbiol Mol Biol Rev. 2008 Sep;72(3):413-44 [PMID: 18772283]
  4. Sci Total Environ. 2020 Oct 10;738:139495 [PMID: 32425257]
  5. PLoS One. 2019 Mar 18;14(3):e0213355 [PMID: 30883565]
  6. Am J Infect Control. 2018 Apr;46(4):369-374 [PMID: 29198571]
  7. J Hosp Infect. 2006 Sep;64(1):76-81 [PMID: 16820249]
  8. AIHA J (Fairfax, Va). 2003 Sep-Oct;64(5):630-9 [PMID: 14521436]
  9. Arch Environ Occup Health. 2017 May 4;72(3):178-183 [PMID: 27219854]
  10. Ann Allergy Asthma Immunol. 2000 Jun;84(6):599-604 [PMID: 10875488]
  11. PLoS One. 2015 Jun 25;10(6):e0131710 [PMID: 26110813]
  12. Am J Infect Control. 2011 Sep;39(7):e30-8 [PMID: 21549446]
  13. J Air Waste Manag Assoc. 2019 Jul;69(7):789-804 [PMID: 30821643]
  14. Acta Biomed. 2020 Apr 10;91(3-S):92-105 [PMID: 32275273]
  15. Appl Environ Microbiol. 2018 Nov 15;84(23): [PMID: 30217848]
  16. Twin Res Hum Genet. 2008 Apr;11(2):150-5 [PMID: 18361715]
  17. Atmos Environ (1994). 2021 Sep 15;261:118563 [PMID: 34177342]
  18. J Allergy Clin Immunol. 2006 Mar;117(3):649-55 [PMID: 16522466]
  19. Microbiome. 2018 Jun 20;6(1):112 [PMID: 29925423]
  20. Biosecur Bioterror. 2011 Sep;9(3):213-24 [PMID: 21793731]
  21. Int J Environ Res Public Health. 2021 Jan 06;18(2): [PMID: 33419142]
  22. J Hosp Infect. 2016 Jul;93(3):242-55 [PMID: 27112048]
  23. J Hosp Infect. 2012 May;81(1):50-7 [PMID: 22463976]
  24. J Infect Dis. 2016 Aug 15;214(4):537-45 [PMID: 27190187]
  25. J Occup Environ Hyg. 2019 Jan;16(1):89-96 [PMID: 30325697]
  26. Nature. 2020 Jun;582(7813):557-560 [PMID: 32340022]
  27. Environ Microbiol. 2018 Oct;20(10):3529-3542 [PMID: 30051625]
  28. Biotechnol Bioeng. 2002 Jul 20;79(2):229-41 [PMID: 12115440]
  29. ISME J. 2013 Jul;7(7):1262-73 [PMID: 23426013]
  30. BMC Microbiol. 2014 Apr 22;14:100 [PMID: 24750818]
  31. J Allergy. 1946 Mar;17:79-86 [PMID: 21019999]
  32. Aerobiologia (Bologna). 2020;36(3):313-324 [PMID: 32421086]
  33. Environ Res. 2021 Apr;195:110808 [PMID: 33513382]
  34. J Aerosol Sci. 2022 Jan;159:105870 [PMID: 34483358]
  35. Environ Int. 2020 Jun;139:105730 [PMID: 32294574]
  36. Int J Environ Res Public Health. 2019 Sep 25;16(19): [PMID: 31557819]
  37. J Environ Monit. 2012 Dec;14(12):3230-9 [PMID: 23152160]
  38. Appl Microbiol Biotechnol. 2019 Sep;103(18):7767-7782 [PMID: 31388730]
  39. Environ Int. 2015 Dec;85:254-72 [PMID: 26436919]
  40. Sci Total Environ. 2018 Dec 1;643:1631-1643 [PMID: 30189579]
  41. Indoor Air. 2016 Oct;26(5):724-33 [PMID: 26296624]
  42. Environ Sci Technol. 2015 Mar 3;49(5):2675-84 [PMID: 25643125]
  43. J Occup Environ Hyg. 2016;13(2):85-93 [PMID: 26325020]
  44. Environ Int. 2018 Dec;121(Pt 1):916-930 [PMID: 30347374]
  45. Environ Sci Pollut Res Int. 2015 Jun;22(11):8190-200 [PMID: 25516249]
  46. PLoS One. 2015 May 29;10(5):e0128022 [PMID: 26024222]
  47. Aerosol Sci Technol. 2017;51(7):787-800 [PMID: 30774180]
  48. J Environ Monit. 2008 Apr;10(4):474-81 [PMID: 18385868]
  49. Ann Occup Hyg. 2015 Jan;59(1):104-15 [PMID: 25187036]
  50. J Appl Microbiol. 2019 May;126(5):1580-1593 [PMID: 30614172]
  51. Indoor Air. 2005;15 Suppl 9:33-40 [PMID: 15910527]
  52. Ann Occup Hyg. 2010 Aug;54(6):651-8 [PMID: 20354054]
  53. Clin Exp Allergy. 2002 Dec;32(12):1776-81 [PMID: 12653171]
  54. Aerosol Sci Technol. 2020;54(5):496-519 [PMID: 35923417]
  55. J Environ Monit. 2012 Sep;14(9):2411-20 [PMID: 22820464]
  56. Environ Sci Pollut Res Int. 2013 May;20(5):2963-72 [PMID: 23054771]
  57. Appl Environ Microbiol. 2013 Dec;79(24):7780-9 [PMID: 24096426]
  58. Environ Sci Process Impacts. 2017 Oct 18;19(10):1312-1319 [PMID: 28858343]
  59. Clin Exp Allergy. 2000 Dec;30(12):1733-9 [PMID: 11122211]
  60. J Environ Monit. 1999 Aug;1(4):361-5 [PMID: 11529137]
  61. Annu Rev Phys Chem. 2021 Apr 20;72:375-397 [PMID: 33472381]
  62. Curr Opin Biotechnol. 2004 Jun;15(3):170-4 [PMID: 15193322]
  63. Sci Total Environ. 2016 Nov 15;571:680-7 [PMID: 27418518]
  64. Environ Monit Assess. 2010 Feb;161(1-4):473-83 [PMID: 19224384]
  65. Indoor Air. 2021 Nov;31(6):1826-1832 [PMID: 34189769]
  66. Int J Health Sci (Qassim). 2015 Jul;9(3):249-56 [PMID: 26609289]
  67. J Environ Sci (China). 2018 May;67:23-35 [PMID: 29778157]
  68. Clin Infect Dis. 2021 Nov 16;73(10):1924-1926 [PMID: 33458756]
  69. J Anim Sci. 2010 Nov;88(11):3693-706 [PMID: 20622180]
  70. Microbiome. 2015 Oct 05;3:46 [PMID: 26434807]
  71. Anal Bioanal Chem. 2005 Jan;381(2):279-301 [PMID: 15517202]
  72. Int J Environ Res Public Health. 2020 Mar 22;17(6): [PMID: 32235764]
  73. Appl Environ Microbiol. 2008 Sep;74(18):5621-7 [PMID: 18676704]
  74. J Hosp Infect. 2007 Aug;66(4):320-6 [PMID: 17655973]
  75. J Air Waste Manag Assoc. 2011 Apr;61(4):461-8 [PMID: 21516941]
  76. Environ Pollut. 2018 Apr;235:20-29 [PMID: 29274534]
  77. Indoor Air. 2015 Feb;25(1):36-44 [PMID: 24750266]
  78. Environ Sci Technol Lett. 2022 Jan 11;9(2):153-159 [PMID: 37566382]
  79. J Appl Microbiol. 2009 Apr;106(4):1133-9 [PMID: 19191951]
  80. Obstet Gynecol. 2020 Oct;136(4):827-829 [PMID: 32826519]
  81. Allergy. 2002 Feb;57(2):164-8 [PMID: 11929422]
  82. J Hosp Infect. 2012 Feb;80(2):128-32 [PMID: 22138124]
  83. J Toxicol Environ Health B Crit Rev. 2015;18(1):43-69 [PMID: 25825807]
  84. ISME J. 2012 Oct;6(10):1801-11 [PMID: 22476354]
  85. IEEE J Transl Eng Health Med. 2018 Jan 26;6:1600112 [PMID: 29795771]
  86. Sci Total Environ. 2017 Dec 1;599-600:2095-2104 [PMID: 28558432]
  87. Environ Res. 1978 Jul;16(1-3):279-84 [PMID: 354926]
  88. J Allergy Clin Immunol. 2002 Apr;109(4):701-6 [PMID: 11941322]

Grants

  1. T32 ES019854/NIEHS NIH HHS

Word Cloud

Created with Highcharts 10.0.0samplerspassivesamplingbioaerosolbiologicalpresenceactivereviewsettlingelectrostaticdevicesBioaerosolusingadvantagesdiscussesdifferentcollectionsamplegravitationalSamplerfiltersPassiveopportunityOverallcanespeciallytimescalesBioaerosolsconsistairborneparticlesoriginplayimportantroleenvironmentmaycausenegativehealtheffectsaerosoltypicallydeterminedusedmuchlessfrequentlyinvestigationsoffercertainsimpledesignlowcostlongdurationtypesincludingmechanismsdisadvantagesapplicabilityenvironmentsavailableelutionanalysismethodsbasedcapturemechanismcombinationdiscussagarsettleplatedustfallcollectorPersonalAeroallergenPAASamonggravity-baseddescribedelectrostatics-basedincludedustclothsEDCRutgersElectrostaticREPSadditionalsopreexistingairflowHVACsystemstechnologiesinexpensiveeasyoperatecontinuouslydaysevenweekseasilyaccomplishedAlthoughusuallytreatedqualitativetoolsstillprovideinformationdiversitylongersuggestsusealongsideaidresearchersdevelopingcomprehensiveunderstandingdynamicsextendedmultiplelocationsSamplers:ComplementaryToolResearchReviewsamplerforces

Similar Articles

Cited By