Sampling across large-scale geological gradients to study geosphere-biosphere interactions.

Donato Giovannelli, Peter H Barry, J Maarten de Moor, Gerdhard L Jessen, Matthew O Schrenk, Karen G Lloyd
Author Information
  1. Donato Giovannelli: Department of Biology, University of Naples "Federico II", Naples, Italy.
  2. Peter H Barry: Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, MA, United States.
  3. J Maarten de Moor: Observatorio Volcanológico y Sismológico de Costa Rica (OVSICORI), Universidad Nacional, Heredia, Costa Rica.
  4. Gerdhard L Jessen: Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
  5. Matthew O Schrenk: Department of Earth and Environmental Sciences, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States.
  6. Karen G Lloyd: Microbiology Department, University of Tennessee, Knoxville, TN, United States.

Abstract

Despite being one of the largest microbial ecosystems on Earth, many basic open questions remain about how life exists and thrives in the deep subsurface biosphere. Much of this ambiguity is due to the fact that it is exceedingly difficult and often prohibitively expensive to directly sample the deep subsurface, requiring elaborate drilling programs or access to deep mines. We propose a sampling approach which involves collection of a large suite of geological, geochemical, and biological data from numerous deeply-sourced seeps-including lower temperature sites-over large spatial scales. This enables research into interactions between the geosphere and the biosphere, expanding the classical local approach to regional or even planetary scales. Understanding the interplay between geology, geochemistry and biology on such scales is essential for building subsurface ecosystem models and extrapolating the ecological and biogeochemical roles of subsurface microbes beyond single site interpretations. This approach has been used successfully across the Central and South American Convergent Margins, and can be applied more broadly to other types of geological regions (i.e., rifting, intraplate volcanic, and hydrothermal settings). Working across geological spatial scales inherently encompasses broad temporal scales (e.g., millions of years of volatile cycling across a convergent margin), providing access to a framework for interpreting evolution and ecosystem functions through deep time and space. We propose that tectonic interactions are fundamental to maintaining planetary habitability through feedbacks that stabilize the ecosphere, and deep biosphere studies are fundamental to understanding geo-bio feedbacks on these processes on a global scale.

Keywords

References

  1. Front Microbiol. 2022 Jan 27;13:722900 [PMID: 35154048]
  2. Environ Microbiol. 2006 Jan;8(1):88-99 [PMID: 16343325]
  3. Appl Environ Microbiol. 2008 Aug;74(15):4910-22 [PMID: 18539788]
  4. PLoS One. 2013;8(1):e53350 [PMID: 23326417]
  5. Front Microbiol. 2013 May 06;4:67 [PMID: 23653623]
  6. Nat Rev Microbiol. 2013 Feb;11(2):83-94 [PMID: 23321532]
  7. Environ Microbiol. 2016 Jun;18(6):1686-703 [PMID: 25727367]
  8. PLoS One. 2012;7(10):e42047 [PMID: 23082107]
  9. mSystems. 2018 Sep 25;3(5): [PMID: 30273414]
  10. Commun Biol. 2021 May 21;4(1):604 [PMID: 34021239]
  11. ISME J. 2019 Jul;13(7):1750-1762 [PMID: 30872803]
  12. mSphere. 2020 Jan 29;5(1): [PMID: 31996419]
  13. Nat Commun. 2013;4:1434 [PMID: 23385579]
  14. Philos Trans A Math Phys Eng Sci. 2016 Jan 28;374(2059): [PMID: 26667907]
  15. Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6756-6761 [PMID: 29891698]
  16. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16213-6 [PMID: 22927371]
  17. Nature. 2008 May 29;453(7195):653-6 [PMID: 18509444]
  18. Front Microbiol. 2019 Apr 15;10:780 [PMID: 31037068]
  19. Science. 1985 Aug 23;229(4715):717-25 [PMID: 17841485]
  20. Sci Rep. 2017 Jul 18;7(1):5680 [PMID: 28720809]
  21. ISME J. 2014 Jul;8(7):1510-21 [PMID: 24430487]
  22. ISME J. 2019 Dec;13(12):3126-3130 [PMID: 31388130]
  23. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2158-63 [PMID: 11226209]
  24. Nat Commun. 2019 Feb 8;10(1):681 [PMID: 30737379]
  25. Geochim Cosmochim Acta. 1993 Jul;57(14):3219-30 [PMID: 11538298]
  26. Front Microbiol. 2013 Jul 08;4:184 [PMID: 23847607]
  27. FEMS Microbiol Ecol. 2016 Sep;92(9): [PMID: 27306555]
  28. Science. 2008 Oct 10;322(5899):275-8 [PMID: 18845759]
  29. Geobiology. 2012 Mar;10(2):178-92 [PMID: 22221398]
  30. Sci Rep. 2018 Jan 15;8(1):755 [PMID: 29335466]
  31. Environ Microbiol Rep. 2021 Feb;13(1):18-21 [PMID: 33015966]
  32. Astrobiology. 2016 Jan;16(1):7-22 [PMID: 26789354]
  33. Microb Genom. 2020 Jul;6(7): [PMID: 32598277]
  34. FEMS Microbiol Ecol. 2011 Jul;77(1):120-33 [PMID: 21410492]
  35. Nat Commun. 2019 Aug 6;10(1):3519 [PMID: 31388058]
  36. Science. 2018 Jan 19;359(6373):320-325 [PMID: 29348236]
  37. Natl Sci Rev. 2014 Jun;1(2):293-314 [PMID: 25419469]
  38. Microbiol Spectr. 2016 Aug;4(4): [PMID: 27726770]
  39. Proc Natl Acad Sci U S A. 2021 Nov 23;118(47): [PMID: 34799449]
  40. Nat Commun. 2018 Jul 23;9(1):2876 [PMID: 30038374]
  41. Nature. 2019 Apr;568(7753):487-492 [PMID: 31019327]
  42. Front Microbiol. 2018 Dec 06;9:2970 [PMID: 30574130]
  43. Microbiologyopen. 2019 Oct;8(10):e893 [PMID: 31271524]
  44. PeerJ. 2017 Jan 26;5:e2945 [PMID: 28149702]
  45. Environ Microbiol. 2019 Oct;21(10):3816-3830 [PMID: 31276280]
  46. Cell. 2021 Jun 24;184(13):3376-3393.e17 [PMID: 34043940]
  47. Science. 2015 May 22;348(6237):1261359 [PMID: 25999513]
  48. ISME J. 2019 Sep;13(9):2264-2279 [PMID: 31073213]
  49. Front Microbiol. 2015 Sep 10;6:901 [PMID: 26441852]
  50. Astrobiology. 2019 Dec;19(12):1505-1522 [PMID: 31592688]
  51. Environ Microbiol. 2016 Jun;18(6):1970-87 [PMID: 26663423]
  52. Annu Rev Microbiol. 2003;57:369-94 [PMID: 14527284]
  53. Science. 2013 Mar 15;339(6125):1305-8 [PMID: 23493710]

Word Cloud

Created with Highcharts 10.0.0deepsubsurfacescalesbiospheregeologicalacrossapproachinteractionsaccessproposelargespatialplanetaryecosystemefundamentalfeedbackslarge-scaleDespiteonelargestmicrobialecosystemsEarthmanybasicopenquestionsremainlifeexiststhrivesMuchambiguityduefactexceedinglydifficultoftenprohibitivelyexpensivedirectlysamplerequiringelaboratedrillingprogramsminessamplinginvolvescollectionsuitegeochemicalbiologicaldatanumerousdeeply-sourcedseeps-includinglowertemperaturesites-overenablesresearchgeosphereexpandingclassicallocalregionalevenUnderstandinginterplaygeologygeochemistrybiologyessentialbuildingmodelsextrapolatingecologicalbiogeochemicalrolesmicrobesbeyondsinglesiteinterpretationsusedsuccessfullyCentralSouthAmericanConvergentMarginscanappliedbroadlytypesregionsiriftingintraplatevolcanichydrothermalsettingsWorkinginherentlyencompassesbroadtemporalgmillionsyearsvolatilecyclingconvergentmarginprovidingframeworkinterpretingevolutionfunctionstimespacetectonicmaintaininghabitabilitystabilizeecospherestudiesunderstandinggeo-bioprocessesglobalscaleSamplinggradientsstudygeosphere-biospheregeomicrobiologygeosphere–biospherecoevolutionhotsprings

Similar Articles

Cited By