Microevolution, speciation and macroevolution in rhizobia: Genomic mechanisms and selective patterns.

Nikolay A Provorov, Evgeny E Andronov, Anastasiia K Kimeklis, Olga P Onishchuk, Anna A Igolkina, Evgeny S Karasev
Author Information
  1. Nikolay A Provorov: Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute for Agricultural Microbiology, Pushkin, Russia.
  2. Evgeny E Andronov: Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute for Agricultural Microbiology, Pushkin, Russia.
  3. Anastasiia K Kimeklis: Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute for Agricultural Microbiology, Pushkin, Russia.
  4. Olga P Onishchuk: Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute for Agricultural Microbiology, Pushkin, Russia.
  5. Anna A Igolkina: Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
  6. Evgeny S Karasev: Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute for Agricultural Microbiology, Pushkin, Russia.

Abstract

Nodule bacteria (rhizobia), N-fixing symbionts of leguminous plants, represent an excellent model to study the fundamental issues of evolutionary biology, including the tradeoff between microevolution, speciation, and macroevolution, which remains poorly understood for free-living organisms. Taxonomically, rhizobia are extremely diverse: they are represented by nearly a dozen families of α-proteobacteria (Rhizobiales) and by some β-proteobacteria. Their genomes are composed of core parts, including house-keeping genes (), and of accessory parts, including symbiotically specialized () genes. In multipartite genomes of evolutionary advanced fast-growing species (Rhizobiaceae), genes are clustered on extra-chromosomal replicons (megaplasmids, chromids), facilitating gene transfer in plant-associated microbial communities. In this review, we demonstrate that in rhizobia, microevolution and speciation involve different genomic and ecological mechanisms: the first one is based on the diversification of genes occurring under the impacts of host-induced natural selection (including its disruptive, frequency-dependent and group forms); the second one-on the diversification of s under the impacts of unknown factors. By contrast, macroevolution represents the polyphyletic origin of super-species taxa, which are dependent on the transfer of genes from rhizobia to various soil-borne bacteria. Since the expression of newly acquired genes on foreign genomic backgrounds is usually restricted, conversion of resulted recombinants into the novel rhizobia species involves post-transfer genetic changes. They are presumably supported by host-induced selective processes resulting in the sequential derepression of genes responsible for nodulation and of / genes responsible for symbiotic N fixation.

Keywords

References

  1. Nature. 1993 Nov 18;366(6452):223-7 [PMID: 8232582]
  2. Proc Natl Acad Sci U S A. 2012 May 29;109(22):8629-34 [PMID: 22586130]
  3. Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18543-8 [PMID: 19020098]
  4. PLoS One. 2015 Mar 06;10(3):e0119198 [PMID: 25745864]
  5. Theory Biosci. 2006 Mar;124(3-4):349-69 [PMID: 17046365]
  6. Int J Syst Bacteriol. 1996 Oct;46(4):972-80 [PMID: 8863426]
  7. Nat Rev Microbiol. 2018 May;16(5):291-303 [PMID: 29379215]
  8. Genes (Basel). 2018 Feb 27;9(3): [PMID: 29495432]
  9. PLoS One. 2015 May 28;10(5):e0127630 [PMID: 26020781]
  10. Syst Appl Microbiol. 2015 Jun;38(4):287-91 [PMID: 25660942]
  11. ISME J. 2022 Jan;16(1):112-121 [PMID: 34272493]
  12. Microbiology (Reading). 2000 Nov;146 ( Pt 11):2997-3005 [PMID: 11065378]
  13. Appl Environ Microbiol. 1998 Feb;64(2):419-26 [PMID: 9464375]
  14. Am J Bot. 2020 Feb;107(2):195-208 [PMID: 32064599]
  15. PLoS One. 2015 Feb 24;10(2):e0117392 [PMID: 25710540]
  16. Annu Rev Phytopathol. 2018 Aug 25;56:289-309 [PMID: 30149793]
  17. Trends Genet. 2009 Nov;25(11):473-5 [PMID: 19836100]
  18. BMC Genomics. 2008 Jun 04;9:271 [PMID: 18522759]
  19. Mech Dev. 2014 Feb;131:111-26 [PMID: 24157521]
  20. Appl Environ Microbiol. 2014 Sep;80(17):5394-402 [PMID: 24951780]
  21. FEMS Microbiol Rev. 1993 Jan;10(1-2):39-63 [PMID: 8431309]
  22. Evolution. 1980 May;34(3):611-612 [PMID: 28568694]
  23. Genes (Basel). 2019 Dec 01;10(12): [PMID: 31805683]
  24. Sci Rep. 2017 May 3;7(1):1419 [PMID: 28469244]
  25. Can J Microbiol. 2009 Aug;55(8):917-27 [PMID: 19898531]
  26. Can J Microbiol. 2001 Jun;47(6):526-34 [PMID: 11467728]
  27. J Exp Bot. 2012 May;63(9):3429-44 [PMID: 22213816]
  28. Open Biol. 2015 Jan;5(1):140133 [PMID: 25589577]
  29. Front Microbiol. 2018 Mar 12;9:428 [PMID: 29593678]
  30. Front Plant Sci. 2018 Jan 22;8:2229 [PMID: 29403508]
  31. Nature. 1989 Sep 28;341(6240):284-5 [PMID: 2797144]
  32. Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13548-53 [PMID: 15340138]
  33. Genes (Basel). 2011 Nov 29;2(4):1017-32 [PMID: 24710303]
  34. Appl Environ Microbiol. 1982 Sep;44(3):583-8 [PMID: 16346089]
  35. Acta Biochim Pol. 2001;48(2):359-65 [PMID: 11732607]
  36. Philos Trans R Soc Lond B Biol Sci. 2015 Sep 26;370(1678):20140324 [PMID: 26323756]
  37. Microbiology (Reading). 2001 Apr;147(Pt 4):981-993 [PMID: 11283294]
  38. Appl Environ Microbiol. 1994 Jun;60(6):1859-66 [PMID: 16349280]
  39. FEMS Microbiol Rev. 2008 Aug;32(5):723-35 [PMID: 18549407]
  40. J Bacteriol. 2002 Jun;184(11):3086-95 [PMID: 12003951]
  41. Genetika. 2014 Nov;50(11):1273-85 [PMID: 25739280]
  42. J Evol Biol. 2013 Sep;26(9):1854-65 [PMID: 23848844]
  43. Ecol Evol. 2019 Aug 30;9(18):10377-10386 [PMID: 31624556]
  44. Genes (Basel). 2011 Dec 21;3(1):35-61 [PMID: 24704842]
  45. Curr Biol. 2013 Jun 17;23(12):1085-8 [PMID: 23707426]
  46. Genes (Basel). 2019 Dec 01;10(12): [PMID: 31805640]
  47. Am Nat. 2000 Dec;156(6):567-576 [PMID: 29592542]
  48. J Theor Biol. 2000 Jul 7;205(1):105-19 [PMID: 10860704]
  49. Appl Environ Microbiol. 2004 Apr;70(4):1999-2012 [PMID: 15066790]
  50. Mol Ecol. 2006 Sep;15(10):2719-34 [PMID: 16911196]
  51. Front Microbiol. 2018 Jul 24;9:1644 [PMID: 30087663]
  52. Mol Plant Microbe Interact. 2015 Mar;28(3):310-8 [PMID: 25514682]
  53. Appl Environ Microbiol. 1995 Feb;61(2):507-12 [PMID: 7574588]
  54. Mol Microbiol. 2010 Feb;75(4):1007-20 [PMID: 20487293]
  55. Nature. 2006 Nov 16;444(7117):323-9 [PMID: 17108957]
  56. Appl Environ Microbiol. 2002 May;68(5):2555-61 [PMID: 11976134]
  57. Annu Rev Plant Biol. 2013;64:781-805 [PMID: 23451778]
  58. PLoS Genet. 2008 Dec;4(12):e1000304 [PMID: 19081788]
  59. Theor Popul Biol. 2006 Nov;70(3):262-72 [PMID: 16890259]
  60. Proc Biol Sci. 2014 Dec 22;281(1797): [PMID: 25355477]
  61. Int J Syst Bacteriol. 1999 Jan;49 Pt 1:51-65 [PMID: 10028247]
  62. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8985-9 [PMID: 7568057]
  63. Adv Microb Physiol. 2012;60:325-89 [PMID: 22633062]
  64. mSystems. 2016 Mar 29;1(2): [PMID: 27822520]
  65. Cold Spring Harb Perspect Biol. 2014 Feb 01;6(2): [PMID: 24492707]
  66. Mikrobiologiia. 2016 Mar-Apr;85(2):115-25 [PMID: 27476200]
  67. Microorganisms. 2021 Dec 24;10(1): [PMID: 35056477]
  68. Appl Environ Microbiol. 2006 Nov;72(11):7365-7 [PMID: 16936054]
  69. PeerJ. 2017 Sep 29;5:e3865 [PMID: 28975058]
  70. Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13859-64 [PMID: 22859506]
  71. Appl Environ Microbiol. 2001 Jul;67(7):3264-8 [PMID: 11425750]
  72. FEMS Microbiol Lett. 2004 Aug 15;237(2):187-93 [PMID: 15321661]
  73. Genetika. 2015 Oct;51(10):1108-16 [PMID: 27169225]
  74. Int J Mol Sci. 2012;13(7):7994-8024 [PMID: 22942686]
  75. Prikl Biokhim Mikrobiol. 2017 Mar-Apr;53(2):127-35 [PMID: 29508968]

Word Cloud

Created with Highcharts 10.0.0genesrhizobiaincludingspeciationevolutionarymacroevolutionbacterialeguminousplantsmicroevolutiongenomespartsspeciestransfergenomicdiversificationimpactshost-inducednaturalselectionselectiveresponsiblesymbioticfixationNoduleN-fixingsymbiontsrepresentexcellentmodelstudyfundamentalissuesbiologytradeoffremainspoorlyunderstoodfree-livingorganismsTaxonomicallyextremelydiverse:representednearlydozenfamiliesα-proteobacteriaRhizobialesβ-proteobacteriacomposedcorehouse-keepingaccessorysymbioticallyspecializedmultipartiteadvancedfast-growingRhizobiaceaeclusteredextra-chromosomalrepliconsmegaplasmidschromidsfacilitatinggeneplant-associatedmicrobialcommunitiesreviewdemonstrateinvolvedifferentecologicalmechanisms:firstonebasedoccurringdisruptivefrequency-dependentgroupformssecondone-onsunknownfactorscontrastrepresentspolyphyleticoriginsuper-speciestaxadependentvarioussoil-borneSinceexpressionnewlyacquiredforeignbackgroundsusuallyrestrictedconversionresultedrecombinantsnovelinvolvespost-transfergeneticchangespresumablysupportedprocessesresultingsequentialderepressionnodulation/NMicroevolutionrhizobia:Genomicmechanismspatternsgenomicsmicro-macro-evolutionplant–microbesymbiosesN2

Similar Articles

Cited By