bestDEG: a web-based application automatically combines various tools to precisely predict differentially expressed genes (DEGs) from RNA-Seq data.

Unitsa Sangket, Prasert Yodsawat, Jiratchaya Nuanpirom, Ponsit Sathapondecha
Author Information
  1. Unitsa Sangket: Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
  2. Prasert Yodsawat: Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
  3. Jiratchaya Nuanpirom: Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
  4. Ponsit Sathapondecha: Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.

Abstract

Background: Differential gene expression analysis using RNA sequencing technology (RNA-Seq) has become the most popular technique in transcriptome research. Although many R packages have been developed to analyze differentially expressed genes (DEGs), several evaluations have shown that no single DEG analysis method outperforms all others. The validity of DEG identification could be increased by using multiple methods and producing the consensus results. However, DEG analysis methods are complex and most of them require prior knowledge of a programming language or command-line shell. Users who do not have this knowledge need to invest time and effort to acquire it.
Methods: We developed a novel web application called "bestDEG" to automatically analyze DEGs with different tools and compare the results. A differential expression (DE) analysis pipeline was created combining the edgeR, DESeq2, NOISeq, and EBSeq packages; selected because they use different statistical methods to identify DEGs. bestDEG was evaluated on human datasets from the MicroArray Quality Control (MAQC) project.
Results: The performance of the bestDEG web application with the human datasets showed excellent results, and the consensus method outperformed the other DE analysis methods in terms of precision (94.71%) and specificity (97.01%). bestDEG is a rapid and efficient tool to analyze DEGs. With bestDEG, users can select DE analysis methods and parameters in the user-friendly web interface. bestDEG also provides a Venn diagram and a table of results. Moreover, the consensus method of this tool can maximize the precision or minimize the false discovery rate (FDR), which reduces the cost of gene expression validation by minimizing wet-lab experiments.

Keywords

References

  1. Genome Res. 2011 Dec;21(12):2213-23 [PMID: 21903743]
  2. Genome Res. 2011 Feb;21(2):193-202 [PMID: 20921232]
  3. Comp Biochem Physiol A Mol Integr Physiol. 2021 Nov;261:111045 [PMID: 34358684]
  4. J Exp Clin Cancer Res. 2020 Dec 9;39(1):277 [PMID: 33298087]
  5. Reprod Domest Anim. 2022 Feb;57(2):125-140 [PMID: 34057751]
  6. Bioinformatics. 2013 Apr 15;29(8):1035-43 [PMID: 23428641]
  7. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  8. Nat Methods. 2018 Jul;15(7):475-476 [PMID: 29967506]
  9. Data Brief. 2021 Apr 20;36:107053 [PMID: 33997198]
  10. Nat Biotechnol. 2006 Sep;24(9):1151-61 [PMID: 16964229]
  11. Sci Rep. 2021 Dec 31;11(1):24514 [PMID: 34972826]
  12. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  13. PeerJ. 2019 Dec 13;7:e8206 [PMID: 31844586]
  14. Nat Rev Genet. 2009 Jan;10(1):57-63 [PMID: 19015660]
  15. Bioinformatics. 2016 Oct 1;32(19):3047-8 [PMID: 27312411]
  16. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  17. Nat Biotechnol. 2006 Sep;24(9):1115-22 [PMID: 16964225]
  18. Nat Cell Biol. 2021 Nov;23(11):1163-1175 [PMID: 34737442]
  19. PLoS One. 2017 Dec 21;12(12):e0190152 [PMID: 29267363]
  20. Bioinformatics. 2009 Feb 15;25(4):555-6 [PMID: 19129209]
  21. Cancer Med. 2020 Jul;9(14):5200-5209 [PMID: 32441484]
  22. BMC Bioinformatics. 2018 Dec 19;19(1):534 [PMID: 30567491]
  23. Int J Mol Sci. 2022 Jan 05;23(1): [PMID: 35008994]
  24. Front Genet. 2019 Mar 29;10:279 [PMID: 30984248]
  25. Sci Rep. 2021 Feb 12;11(1):3750 [PMID: 33580098]

MeSH Term

Humans
RNA-Seq
Gene Expression Profiling
Software
Transcriptome
Internet

Word Cloud

Created with Highcharts 10.0.0analysisDEGsmethodsapplicationbestDEGresultswebexpressionRNA-SeqanalyzeexpressedgenesDEGmethodconsensusDEgeneusingpackagesdevelopeddifferentiallyknowledgeautomaticallydifferenttoolsDESeq2NOISeqEBSeqhumandatasetsprecisiontoolcandataBackground:DifferentialRNAsequencingtechnologybecomepopulartechniquetranscriptomeresearchAlthoughmanyRseveralevaluationsshownsingleoutperformsothersvalidityidentificationincreasedmultipleproducingHowevercomplexrequirepriorprogramminglanguagecommand-lineshellUsersneedinvesttimeeffortacquireitMethods:novelcalled"bestDEG"comparedifferentialpipelinecreatedcombiningedgeRselectedusestatisticalidentifyevaluatedMicroArrayQualityControlMAQCprojectResults:performanceshowedexcellentoutperformedterms9471%specificity9701%rapidefficientusersselectparametersuser-friendlyinterfacealsoprovidesVenndiagramtableMoreovermaximizeminimizefalsediscoveryrateFDRreducescostvalidationminimizingwet-labexperimentsbestDEG:web-basedcombinesvariouspreciselypredictDifferentiallyEdgeRShinyWeb-based

Similar Articles

Cited By