New functions of C3G in platelet biology: Contribution to ischemia-induced angiogenesis, tumor metastasis and TPO clearance.

Luis Hernández-Cano, Cristina Fernández-Infante, Óscar Herranz, Pablo Berrocal, Francisco S Lozano, Manuel A Sánchez-Martín, Almudena Porras, Carmen Guerrero
Author Information
  1. Luis Hernández-Cano: Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Salamanca, Spain.
  2. Cristina Fernández-Infante: Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Salamanca, Spain.
  3. Óscar Herranz: Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Salamanca, Spain.
  4. Pablo Berrocal: Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Salamanca, Spain.
  5. Francisco S Lozano: Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
  6. Manuel A Sánchez-Martín: Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
  7. Almudena Porras: Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
  8. Carmen Guerrero: Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Salamanca, Spain.

Abstract

C3G is a Rap1 guanine nucleotide exchange factor that controls platelet activation, aggregation, and the release of α-granule content. Transgenic expression of C3G in platelets produces a net proangiogenic secretome through the retention of thrombospondin-1. In a physiological context, C3G also promotes megakaryocyte maturation and proplatelet formation, but without affecting mature platelet production. The aim of this work is to investigate whether C3G is involved in pathological megakaryopoiesis, as well as its specific role in platelet mediated angiogenesis and tumor metastasis. Using megakaryocyte-specific C3G knockout and transgenic mouse models, we found that both C3G overexpression and deletion promoted platelet-mediated angiogenesis, induced by tumor cell implantation or hindlimb ischemia, through differential release of proangiogenic and antiangiogenic factors. However, only C3G deletion resulted in a higher recruitment of hemangiocytes from the bone marrow. In addition, C3G null expression enhanced thrombopoietin (TPO)-induced platelet production, associated with reduced TPO plasma levels. Moreover, after 5-fluorouracil-induced platelet depletion and rebound, C3G knockout mice showed a defective return to homeostatic platelet levels, indicating impaired platelet turnover. Mechanistically, C3G promotes c-Mpl ubiquitination by inducing Src-mediated c-Cbl phosphorylation and participates in c-Mpl degradation the proteasome and lysosome systems, affecting TPO internalization. We also unveiled a positive role of platelet C3G in tumor cell-induced platelet aggregation, which facilitated metastatic cell homing and adhesion. Overall, these findings revealed that C3G plays a crucial role in platelet-mediated angiogenesis and metastasis, as well as in platelet level modulation in response to pathogenic stimuli.

Keywords

References

  1. Biochim Biophys Acta. 2012 Aug;1823(8):1366-77 [PMID: 22659131]
  2. Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5884-9 [PMID: 24711413]
  3. Blood. 2008 Feb 1;111(3):1227-33 [PMID: 17962514]
  4. Blood. 2011 Apr 7;117(14):3893-902 [PMID: 21224474]
  5. Mol Cell Biol. 2001 Apr;21(8):2659-70 [PMID: 11283246]
  6. Blood. 2012 Jul 5;120(1):199-206 [PMID: 22589474]
  7. PLoS One. 2015 Jul 02;10(7):e0131445 [PMID: 26133989]
  8. Cell Commun Signal. 2018 Dec 19;16(1):101 [PMID: 30567575]
  9. Blood. 2011 Apr 7;117(14):3907-11 [PMID: 21330475]
  10. Blood. 2001 Nov 1;98(9):2720-5 [PMID: 11675343]
  11. Arch Immunol Ther Exp (Warsz). 2006 Mar-Apr;54(2):75-84 [PMID: 16648968]
  12. Blood. 2008 Sep 15;112(6):2222-31 [PMID: 18487512]
  13. Cell Signal. 2010 Mar;22(3):377-85 [PMID: 19861161]
  14. J Biol Chem. 2001 Sep 14;276(37):35185-93 [PMID: 11448952]
  15. Front Endocrinol (Lausanne). 2017 Sep 12;8:234 [PMID: 28955303]
  16. Int J Cancer. 2016 May 1;138(9):2078-87 [PMID: 26356352]
  17. Microsc Res Tech. 2010 Oct;73(11):1019-29 [PMID: 20232465]
  18. Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):328-336 [PMID: 31843888]
  19. Nat Med. 2006 May;12(5):557-67 [PMID: 16648859]
  20. J Biol Chem. 1999 Jan 22;274(4):2097-106 [PMID: 9890970]
  21. J Thromb Haemost. 2006 Mar;4(3):638-47 [PMID: 16460446]
  22. Clin Exp Metastasis. 2017 Jan;34(1):25-35 [PMID: 27744579]
  23. Signal Transduct Target Ther. 2020 Apr 1;5(1):29 [PMID: 32296045]
  24. Br J Haematol. 1993 Mar;83(3):433-41 [PMID: 8485049]
  25. Oncotarget. 2017 Nov 6;8(67):110994-111011 [PMID: 29340032]
  26. Blood. 2018 Nov 1;132(18):1951-1962 [PMID: 30131434]
  27. Cell Cycle. 2011 May 15;10(10):1582-9 [PMID: 21478671]
  28. Cancers (Basel). 2019 Feb 19;11(2): [PMID: 30791448]
  29. Oncogene. 1998 Feb 5;16(5):613-24 [PMID: 9482107]
  30. Oncogene. 2006 Feb 2;25(5):781-94 [PMID: 16186797]
  31. Nat Med. 2013 May;19(5):586-94 [PMID: 23584088]
  32. Blood. 2015 Jul 30;126(5):651-60 [PMID: 25999457]
  33. Blood. 2005 Nov 1;106(9):2952-61 [PMID: 16076873]
  34. J Cell Mol Med. 2020 Nov;24(21):12491-12503 [PMID: 32954656]
  35. Oncogene. 2002 May 13;21(21):3359-67 [PMID: 12032774]
  36. J Invest Dermatol. 2010 Feb;130(2):576-86 [PMID: 19727118]
  37. J Thromb Haemost. 2011 Feb;9(2):237-49 [PMID: 21040448]
  38. J Biol Chem. 1996 Apr 5;271(14):8435-42 [PMID: 8626543]
  39. Blood. 2010 Feb 11;115(6):1254-63 [PMID: 19880496]
  40. Neoplasma. 2003;50(6):447-51 [PMID: 14689068]
  41. Cell Commun Signal. 2013 Jan 23;11(1):9 [PMID: 23343344]
  42. J Thromb Haemost. 2010 Mar;8(3):454-62 [PMID: 20002545]
  43. J Exp Med. 2006 May 15;203(5):1221-33 [PMID: 16618794]
  44. J Vis Exp. 2009 Jan 21;(23): [PMID: 19229179]
  45. Exp Hematol. 2013 Jul;41(7):635-645.e3 [PMID: 23507524]

Word Cloud

Created with Highcharts 10.0.0C3GplateletangiogenesistumormetastasisTPOroleplatelet-mediatedc-MplRap1aggregationreleaseexpressionplateletsproangiogenicalsopromotesaffectingproductionwellknockoutdeletioncellthrombopoietinlevelsischemia-inducedguaninenucleotideexchangefactorcontrolsactivationα-granulecontentTransgenicproducesnetsecretomeretentionthrombospondin-1physiologicalcontextmegakaryocytematurationproplateletformationwithoutmatureaimworkinvestigatewhetherinvolvedpathologicalmegakaryopoiesisspecificmediatedUsingmegakaryocyte-specifictransgenicmousemodelsfoundoverexpressionpromotedinducedimplantationhindlimbischemiadifferentialantiangiogenicfactorsHoweverresultedhigherrecruitmenthemangiocytesbonemarrowadditionnullenhanced-inducedassociatedreducedplasmaMoreover5-fluorouracil-induceddepletionreboundmiceshoweddefectivereturnhomeostaticindicatingimpairedturnoverMechanisticallyubiquitinationinducingSrc-mediatedc-Cblphosphorylationparticipatesdegradationproteasomelysosomesystemsinternalizationunveiledpositivecell-inducedfacilitatedmetastatichomingadhesionOverallfindingsrevealedplayscruciallevelmodulationresponsepathogenicstimuliNewfunctionsbiology:ContributionclearanceRapGEF1

Similar Articles

Cited By