Optimal quantum reservoir computing for the noisy intermediate-scale quantum era.

L Domingo, G Carlo, F Borondo
Author Information
  1. L Domingo: Instituto de Ciencias Matemáticas, Campus de Cantoblanco, Nicolás Cabrera, 13-15, 28049 Madrid, Spain.
  2. G Carlo: Comisión Nacional de Energía Atómica, CONICET, Departamento de Física, Av. del Libertador 8250, 1429 Buenos Aires, Argentina.
  3. F Borondo: Instituto de Ciencias Matemáticas, Campus de Cantoblanco, Nicolás Cabrera, 13-15, 28049 Madrid, Spain.

Abstract

Universal fault-tolerant quantum computers require millions of qubits with low error rates. Since this technology is years ahead, noisy intermediate-scale quantum (NISQ) computation is receiving tremendous interest. In this setup, quantum reservoir computing is a relevant machine learning algorithm. Its simplicity of training and implementation allows to perform challenging computations on today's available machines. In this Letter, we provide a criterion to select optimal quantum reservoirs, requiring few and simple gates. Our findings demonstrate that they render better results than other commonly used models with significantly less gates and also provide insight on the theoretical gap between quantum reservoir computing and the theory of quantum states' complexity.

Word Cloud

Created with Highcharts 10.0.0quantumreservoircomputingnoisyintermediate-scaleprovidegatesUniversalfault-tolerantcomputersrequiremillionsqubitslowerrorratesSincetechnologyyearsaheadNISQcomputationreceivingtremendousinterestsetuprelevantmachinelearningalgorithmsimplicitytrainingimplementationallowsperformchallengingcomputationstoday'savailablemachinesLettercriterionselectoptimalreservoirsrequiringsimplefindingsdemonstraterenderbetterresultscommonlyusedmodelssignificantlylessalsoinsighttheoreticalgaptheorystates'complexityOptimalera

Similar Articles

Cited By