Available phosphorus levels modulate gene expression related to intestinal calcium and phosphorus absorption and bone parameters differently in gilts and barrows.

Julia Christiane Vötterl, Jutamat Klinsoda, Simone Koger, Isabel Hennig-Pauka, Doris Verhovsek, Barbara U Metzler-Zebeli
Author Information
  1. Julia Christiane Vötterl: Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
  2. Jutamat Klinsoda: Institute of Food Research and Product Development, University of Kasetsart, Bangkok 10900, Thailand.
  3. Simone Koger: Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
  4. Isabel Hennig-Pauka: Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum 49456, Germany.
  5. Doris Verhovsek: University Clinic of Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
  6. Barbara U Metzler-Zebeli: Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna 1210, Austria.

Abstract

OBJECTIVE: Dietary phytase increases bioavailability of phytate-bound phosphorus (P) in pig nutrition affecting dietary calcium (Ca) to P ratio, intestinal uptake, and systemic utilization of both minerals, which may contribute to improper bone mineralization. We used phytase to assess long-term effects of two dietary available P (aP) levels using a one-phase feeding system on gene expression related to Ca and P homeostasis along the intestinal tract and in the kidney, short-chain fatty acids in stomach, cecum, and colon, serum, and bone parameters in growing gilts and barrows.
METHODS: Growing pigs (37.9±6.2 kg) had either free access to a diet without (Con; 75 gilts and 69 barrows) or with phytase (650 phytase units; n = 72/diet) for 56 days. Samples of blood, duodenal, jejunal, ileal, cecal, and colonic mucosa and digesta, kidney, and metacarpal bones were collected from 24 pigs (6 gilts and 6 barrows per diet).
RESULTS: Phytase decreased daily feed intake and average daily gain, whereas aP intake increased with phytase versus Con diet (P<0.05). Gilts had higher colonic expression of TRPV5, CDH1, CLDN4, ZO1, and OCLN and renal expression of TRPV5 and SLC34A3 compared to barrows (P<0.05). Phytase increased duodenal expression of TRPV5, TRPV6, CALB1, PMCA1b, CDH1, CLDN4, ZO1, and OCLN compared to Con diet (P<0.05). Furthermore, phytase increased expression of SCL34A2 in cecum and of FGF23 and CLDN4 in colon compared to Con diet (P<0.05). Alongside, phytase decreased gastric propionate, cecal valerate, and colonic caproate versus Con diet (P<0.05). Phytase reduced cortical wall thickness and index of metacarpal bones (P<0.05).
CONCLUSION: Gene expression results suggested an intestinal adaptation to increased dietary aP amount by increasing duodenal trans- and paracellular Ca absorption to balance the systemically available Ca and P levels, whereas no adaption of relevant gene expression in kidney occurred. Greater average daily gain in barrows related to higher feed intake.

Keywords

References

  1. Animal. 2022 Jan;16(1):100437 [PMID: 35007882]
  2. Microorganisms. 2020 Jul 18;8(7): [PMID: 32708445]
  3. Asian-Australas J Anim Sci. 2014 Jan;27(1):1-9 [PMID: 25049919]
  4. Nutrients. 2020 May 25;12(5): [PMID: 32466313]
  5. J Physiol Sci. 2019 Sep;69(5):683-696 [PMID: 31222614]
  6. J Sci Food Agric. 2015 Mar 30;95(5):878-96 [PMID: 25382707]
  7. Appl Environ Microbiol. 2020 Feb 3;86(4): [PMID: 31757823]
  8. J Anim Sci. 2019 Jan 1;97(1):327-337 [PMID: 30325441]
  9. Arch Anim Nutr. 2017 Feb;71(1):81-92 [PMID: 27841665]
  10. J Endocrinol Invest. 2004 Jan;27(1):99-105 [PMID: 15053252]
  11. J Immunol Res. 2018 Dec 16;2018:2645465 [PMID: 30648119]
  12. J Anim Sci. 2011 Dec;89(12):4262-71 [PMID: 21890502]
  13. Mol Biol Cell. 2008 May;19(5):1912-21 [PMID: 18287530]
  14. Best Pract Res Clin Gastroenterol. 2016 Apr;30(2):145-59 [PMID: 27086882]
  15. Nutrients. 2019 Feb 20;11(2): [PMID: 30791512]
  16. Sci Rep. 2018 Sep 3;8(1):13044 [PMID: 30177854]
  17. Transl Anim Sci. 2021 Mar 20;5(2):txab059 [PMID: 34222820]
  18. Blood Purif. 2009;27(4):387-94 [PMID: 19299893]
  19. Am J Clin Nutr. 2004 May;79(5):907S-912S [PMID: 15113738]
  20. Int J Mol Sci. 2020 Feb 01;21(3): [PMID: 32024112]
  21. Mol Cell Endocrinol. 2016 Sep 5;432:56-65 [PMID: 27178987]
  22. Osteoporos Int. 2019 Aug;30(8):1655-1662 [PMID: 31044263]

Grants

  1. /University of Veterinary Medicine Vienna

Word Cloud

Created with Highcharts 10.0.0expressionphytasebarrowsdietp<005PConCaintestinalgiltsincreasedphosphorusdietaryboneaPlevelsgenerelatedkidneyduodenalcolonicPhytasedailyintakeTRPV5CLDN4comparedcalciumavailablececumcolonparameterspigscecalmetacarpalbones6decreasedfeedaveragegainwhereasversushigherCDH1ZO1OCLNabsorptionOBJECTIVE:Dietaryincreasesbioavailabilityphytate-boundpignutritionaffectingratiouptakesystemicutilizationmineralsmaycontributeimpropermineralizationusedassesslong-termeffectstwousingone-phasefeedingsystemhomeostasisalongtractshort-chainfattyacidsstomachserumgrowingMETHODS:Growing379±62kgeitherfreeaccesswithout7569650unitsn=72/diet56daysSamplesbloodjejunalilealmucosadigestacollected24perRESULTS:GiltsrenalSLC34A3TRPV6CALB1PMCA1bFurthermoreSCL34A2FGF23AlongsidegastricpropionatevaleratecaproatereducedcorticalwallthicknessindexCONCLUSION:Generesultssuggestedadaptationamountincreasingtrans-paracellularbalancesystemicallyadaptionrelevantoccurredGreaterAvailablemodulatedifferentlyBonesIntestinesKidneysPhosphorusPhytasesSerum

Similar Articles

Cited By (1)