Genome characterization, phylogenomic assessment and spatio-temporal dynamics study of highly mutated BA variants from India.

Poulomi Sarkar, Sarthak Banerjee, Saikat Chakrabarti, Partha Chakrabarti, Arun Bandyopadhyay, Arpita Ghosh Mitra, Soumen Saha, Aviral Roy, Siddik Sarkar
Author Information
  1. Poulomi Sarkar: CSIR-Indian Institute of Chemical Biology (IICB), Kolkata, WB 700032, India; IICB-Translational Research Unit of Excellence, Salt Lake, WB 700091, India.
  2. Sarthak Banerjee: CSIR-Indian Institute of Chemical Biology (IICB), Kolkata, WB 700032, India; IICB-Translational Research Unit of Excellence, Salt Lake, WB 700091, India.
  3. Saikat Chakrabarti: CSIR-Indian Institute of Chemical Biology (IICB), Kolkata, WB 700032, India; IICB-Translational Research Unit of Excellence, Salt Lake, WB 700091, India.
  4. Partha Chakrabarti: CSIR-Indian Institute of Chemical Biology (IICB), Kolkata, WB 700032, India.
  5. Arun Bandyopadhyay: CSIR-Indian Institute of Chemical Biology (IICB), Kolkata, WB 700032, India; IICB-Translational Research Unit of Excellence, Salt Lake, WB 700091, India.
  6. Arpita Ghosh Mitra: MEDICA Super-specialty Hospital, Kolkata, India.
  7. Soumen Saha: MEDICA Super-specialty Hospital, Kolkata, India.
  8. Aviral Roy: MEDICA Super-specialty Hospital, Kolkata, India.
  9. Siddik Sarkar: CSIR-Indian Institute of Chemical Biology (IICB), Kolkata, WB 700032, India; IICB-Translational Research Unit of Excellence, Salt Lake, WB 700091, India. Electronic address: siddik.sarkar@iicb.res.in.

Abstract

PURPOSE: The emergence of highly mutated and transmissible BA variants has caused an unprecedented surge in COVID-19 infections worldwide. Thorough analysis of its genome structure and phylogenomic evolutionary details will serve as scientific reference for future research.
METHOD: Here, we have analyzed the BA variants from India using whole-genome sequencing, spike protein mutation study, spatio-temporal surveillance, phylogenomic assessment and epitope mapping.
RESULTS: The predominance of BA.2/BA.2-like was observed in India during COVID-19 third wave. Genome analysis and mutation study highlighted the existence of 2128 amino acid changes within BA as compared to NC_045512.2. Presence of 23 unknown mutation sites (spanning region 61-831) were observed among the Indian BA variants as compared to the global BA strains. Unassigned probable Omicron showed the highest number of mutations (370) followed by BA.1 (104), BA.2.3 (56), and BA.2 (27). Presence of mutations 'Q493R ​+ ​Q498R ​+ ​N501Y', and 'K417 ​N ​+ ​E484A ​+ ​N501Y' remained exclusive to BA.2 as well as unassigned probable Omicron. The time-tree and phylogenomic network assessed the evolutionary relationship of the BA variants. Existence of 424 segregating sites and 113 parsimony informative sites within BA genomes were observed through haplotype network analysis. Epitope mapping depicted the presence of unique antigenic sites within the receptor binding domain of the BA variants that could be exploited for robust vaccine development.
CONCLUSION: These findings provide important scientific insights about the nature, diversity, and evolution of Indian BA variants. The study further divulges in the avenues of therapeutic upgradation for better management and eventual eradication of COVID-19.

Keywords

References

  1. J Med Virol. 2022 Aug;94(8):3739-3749 [PMID: 35467028]
  2. Cell. 2021 Jan 7;184(1):64-75.e11 [PMID: 33275900]
  3. Signal Transduct Target Ther. 2022 Apr 26;7(1):138 [PMID: 35474215]
  4. Clin Infect Dis. 2022 Nov 14;75(10):1841-1844 [PMID: 35535770]
  5. Cell. 2020 Aug 20;182(4):812-827.e19 [PMID: 32697968]
  6. Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2200592119 [PMID: 35858386]
  7. Microorganisms. 2021 Jul 20;9(7): [PMID: 34361977]
  8. Lancet. 2022 Jan 29;399(10323):437-446 [PMID: 35065011]
  9. Sci Rep. 2023 Mar 22;13(1):4692 [PMID: 36949118]
  10. Nature. 2021 Aug;596(7871):276-280 [PMID: 34237773]
  11. Nat Med. 2022 Mar;28(3):490-495 [PMID: 35046573]
  12. Science. 2022 Feb 25;375(6583):864-868 [PMID: 35076256]
  13. Genetics. 1989 Nov;123(3):585-95 [PMID: 2513255]
  14. Nat Commun. 2022 May 18;13(1):2745 [PMID: 35585202]
  15. Ann Med Surg (Lond). 2022 Jul;79:104032 [PMID: 35757314]
  16. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  17. MMWR Morb Mortal Wkly Rep. 2021 Dec 17;70(50):1731-1734 [PMID: 34914670]
  18. J Chem Inf Model. 2022 Jan 24;62(2):412-422 [PMID: 34989238]
  19. Nature. 2022 Feb;602(7898):664-670 [PMID: 35016195]
  20. Nat Med. 2021 Apr;27(4):622-625 [PMID: 33654292]
  21. Viruses. 2022 Mar 06;14(3): [PMID: 35336952]
  22. J Phys Chem B. 2022 Jun 30;126(25):4669-4678 [PMID: 35723978]
  23. Nature. 2022 Mar;603(7902):679-686 [PMID: 35042229]
  24. Gene Rep. 2022 Mar;26:101420 [PMID: 34754982]
  25. BMC Bioinformatics. 2007 Jan 05;8:4 [PMID: 17207271]
  26. Biochem Biophys Res Commun. 2022 Jan 29;590:34-41 [PMID: 34968782]
  27. Clin Microbiol Infect. 2022 Nov;28(11):1503.e5-1503.e8 [PMID: 35792280]
  28. Nature. 2022 Feb;602(7895):19 [PMID: 35058630]
  29. Nucleic Acids Res. 2017 Jul 3;45(W1):W24-W29 [PMID: 28472356]
  30. Molecules. 2021 Nov 10;26(22): [PMID: 34833873]
  31. Cell. 2020 Sep 3;182(5):1295-1310.e20 [PMID: 32841599]
  32. Cell Host Microbe. 2021 Jan 13;29(1):44-57.e9 [PMID: 33259788]
  33. J Med Virol. 2022 Nov;94(11):5096-5102 [PMID: 35815524]
  34. Cell Rep Med. 2021 Apr 20;2(4):100255 [PMID: 33842902]
  35. Comput Struct Biotechnol J. 2021;19:4184-4191 [PMID: 34336146]
  36. J Clin Microbiol. 2021 Jun 18;59(7):e0074121 [PMID: 33952596]
  37. Cell. 2020 Sep 3;182(5):1284-1294.e9 [PMID: 32730807]
  38. PLoS Pathog. 2021 Aug 5;17(8):e1009772 [PMID: 34352039]
  39. Cell. 2020 Oct 29;183(3):739-751.e8 [PMID: 32991842]
  40. Science. 2021 Nov 19;374(6570):995-999 [PMID: 34648303]
  41. J Med Virol. 2022 Jun;94(6):2376-2383 [PMID: 35118687]
  42. Clin Microbiol Infect. 2022 Jan;28(1):124-129 [PMID: 34537361]

MeSH Term

Humans
COVID-19
Phylogeny
India
Amino Acids
Mutation

Chemicals

Amino Acids