Characterization and Function of Cryopreserved Bone Marrow from Deceased Organ Donors: A Potential Viable Alternative Graft Source.

Brian H Johnstone, John R Woods, W Scott Goebel, Dongsheng Gu, Chieh-Han Lin, Hannah M Miller, Kelsey G Musall, Aubrey M Sherry, Barbara J Bailey, Emily Sims, Anthony L Sinn, Karen E Pollok, Stephen Spellman, Jeffery J Auletta, Erik J Woods
Author Information
  1. Brian H Johnstone: Ossium Health, Indianapolis, Indiana; Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana.
  2. John R Woods: Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana.
  3. W Scott Goebel: Ossium Health, Indianapolis, Indiana; Department of Pediatrics (Hematology/Oncology; Blood and Bone Marrow Stem Cell Transplant and Immune Cell Therapy Program), Indiana University School of Medicine, Indianapolis, Indiana.
  4. Dongsheng Gu: Ossium Health, Indianapolis, Indiana.
  5. Chieh-Han Lin: Ossium Health, Indianapolis, Indiana.
  6. Hannah M Miller: Ossium Health, Indianapolis, Indiana.
  7. Kelsey G Musall: Ossium Health, Indianapolis, Indiana.
  8. Aubrey M Sherry: Ossium Health, Indianapolis, Indiana.
  9. Barbara J Bailey: Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana.
  10. Emily Sims: Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana.
  11. Anthony L Sinn: Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana.
  12. Karen E Pollok: Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana.
  13. Stephen Spellman: National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota.
  14. Jeffery J Auletta: National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota; Hematology/Oncology and Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio.
  15. Erik J Woods: Ossium Health, Indianapolis, Indiana; Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana. Electronic address: erik@ossiumhealth.com.

Abstract

Despite the readily available graft sources for allogeneic hematopoietic cell transplantation (alloHCT), a significant unmet need remains in the timely provision of suitable unrelated donor grafts. This shortage is related to the rarity of certain HLA alleles in the donor pool, nonclearance of donors owing to infectious disease or general health status, and prolonged graft procurement and processing times. An alternative hematopoietic progenitor cell (HPC) graft source obtained from the vertebral bodies (VBs) of deceased organ donors could alleviate many of the obstacles associated with using grafts from healthy living donors or umbilical cord blood (UCB). Deceased organ donor-derived bone marrow (BM) can be preemptively screened, cryogenically banked for on-demand use, and made available in adequate cell doses for HCT. We have developed a good manufacturing practice (GMP)-compliant process to recover and cryogenically bank VB-derived HPCs from deceased organ donor (OD) BM. Here we present results from an analysis of HPCs from BM obtained from 250 deceased donors to identify any substantial difference in composition or quality compared with HPCs from BM aspirated from the iliac crests of healthy living donors. BM from deceased donor VBs was processed in a central GMP facility and packaged for cryopreservation in 5% DMSO/2.5% human serum albumin. BM aspirated from living donor iliac crests was obtained and used for comparison. A portion of each specimen was analyzed before and after cryopreservation by flow cytometry and colony-forming unit potential. Bone marrow chimerism potential was assessed in irradiated immunocompromised NSG mice. Analysis of variance with Bonferroni correction for multiple comparisons was used to determine how cryopreservation affects BM cells and to evaluate indicators of successful engraftment of BM cells into irradiated murine models. The t test (with 95% confidence intervals [CIs]) was used to compare cells from deceased donors and living donors. A final dataset of complete clinical and matched laboratory data from 226 cryopreserved samples was used in linear regressions to predict outcomes of BM HPC processing. When compared before and after cryopreservation, OD-derived BM HPCs were found to be stable, with CD34 cells maintaining high viability and function after thawing. The yield from a single donor is sufficient for transplantation of an average of 1.6 patients (range, 1.2 to 7.5). CD34 cells from OD-derived HPCs from BM productively engrafted sublethally irradiated immunocompromised mouse BM (>44% and >67% chimerism at 8 and 16 weeks, respectively). Flow cytometry and secondary transplantation confirmed that OD HPCs from BM is composed of long-term engrafting CD34CD38CD45RACD90CD49f HSCs. Linear regression identified no meaningful predictive associations between selected donor-related characteristics and OD BM HPC quality or yield. Collectively, these data demonstrate that cryopreserved BM HPCs from deceased organ donors is potent and functionally equivalent to living donor BM HPCs and is a viable on-demand graft source for clinical HCT. Prospective clinical trials will soon commence in collaboration with the Center for International Blood and Marrow Research to assess the feasibility, safety, and efficacy of Ossium HPCs from BM (ClinicalTrials.gov identifier NCT05068401).

Keywords

Associated Data

ClinicalTrials.gov | NCT05068401

References

  1. Nephrol Dial Transplant. 1998 Jan;13(1):34-6 [PMID: 9481712]
  2. J Transl Med. 2021 Apr 8;19(1):145 [PMID: 33832504]
  3. Lancet. 1994 Jul 16;344(8916):151-5 [PMID: 7912764]
  4. Transplant Proc. 1997 Feb-Mar;29(1-2):1184-5 [PMID: 9123264]
  5. Transplant Proc. 1995 Feb;27(1):210-2 [PMID: 7878975]
  6. Ann Surg. 1999 Sep;230(3):372-9; discussion 379-81 [PMID: 10493484]
  7. J Immunol. 2005 May 15;174(10):6477-89 [PMID: 15879151]
  8. Biol Blood Marrow Transplant. 2019 Feb;25(2):270-278 [PMID: 30292009]
  9. Transplant Cell Ther. 2021 Feb;27(2):184.e1-184.e13 [PMID: 33045385]
  10. Ann Thorac Surg. 2000 Feb;69(2):345-50 [PMID: 10735661]
  11. Transplant Proc. 1994 Dec;26(6):3523-4 [PMID: 7998260]
  12. Cryobiology. 1996 Aug;33(4):391-403 [PMID: 8764847]
  13. J Transl Med. 2020 Aug 5;18(1):300 [PMID: 32758261]
  14. Transplant Proc. 1995 Dec;27(6):3121-2 [PMID: 8539873]
  15. J Hematother. 1996 Jun;5(3):213-26 [PMID: 8817388]
  16. J Clin Oncol. 2013 Jul 20;31(21):2662-70 [PMID: 23797000]
  17. Biol Blood Marrow Transplant. 2020 Jul;26(7):1312-1317 [PMID: 32283185]
  18. Transplant Proc. 1997 Feb-Mar;29(1-2):1207-8 [PMID: 9123275]
  19. Ann Thorac Surg. 1995 Oct;60(4):1015-20 [PMID: 7574940]
  20. Ann Intern Med. 2004 Jun 15;140(12):1037-51 [PMID: 15197022]
  21. Transplant Cell Ther. 2021 Aug;27(8):664.e1-664.e6 [PMID: 33964514]
  22. Am J Transplant. 2018 Jan;18(1):74-88 [PMID: 28719147]
  23. Transplant Cell Ther. 2022 Apr;28(4):215.e1-215.e10 [PMID: 35042013]
  24. Transplant Proc. 2003 Mar;35(2):871-2 [PMID: 12644171]
  25. Biol Blood Marrow Transplant. 2019 Sep;25(9):1875-1883 [PMID: 31085303]
  26. Transfusion. 2017 Nov;57(11):2782-2789 [PMID: 28963719]
  27. Cytotherapy. 2021 Jul;23(7):635-640 [PMID: 33423867]
  28. Blood. 1959 Feb;14(2):140-7 [PMID: 13618371]
  29. Blood. 1986 Jun;67(6):1655-60 [PMID: 3518833]
  30. JCI Insight. 2020 May 7;5(9): [PMID: 32376800]
  31. Blood. 2015 Aug 20;126(8):1033-40 [PMID: 26130705]
  32. Transplant Cell Ther. 2022 Feb;28(2):59-60 [PMID: 35115133]
  33. J Thorac Cardiovasc Surg. 2000 Apr;119(4 Pt 1):673-81 [PMID: 10733755]
  34. Am J Hematol. 2021 Feb 1;96(2):179-187 [PMID: 33108034]
  35. N Engl J Med. 2014 Jul 24;371(4):339-48 [PMID: 25054717]
  36. Bone Marrow Transplant. 2013 Nov;48(12):1497-505 [PMID: 23645167]
  37. Am J Hematol. 2013 Jul;88(7):581-8 [PMID: 23606215]
  38. Ann Surg. 2013 Feb;257(2):345-51 [PMID: 23001085]
  39. Disaster Med Public Health Prep. 2011 Mar;5 Suppl 1:S20-31 [PMID: 21402809]
  40. Blood Adv. 2017;1(4):288-292 [PMID: 29242852]
  41. Bone Marrow Transplant. 2021 Oct;56(10):2489-2496 [PMID: 34127808]
  42. Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):13022-7 [PMID: 20615947]
  43. Bone Marrow Transplant. 2021 Aug;56(8):2013-2015 [PMID: 33846562]
  44. Transplant Cell Ther. 2021 Jun;27(6):507-516 [PMID: 33865804]
  45. Transplant Proc. 1995 Dec;27(6):3387-8 [PMID: 8540010]
  46. Stat Med. 2008 Jul 10;27(15):2865-73 [PMID: 17960576]

Grants

  1. R43 AI129444/NIAID NIH HHS
  2. R44 AI129444/NIAID NIH HHS

MeSH Term

Humans
Animals
Mice
Bone Marrow
Prospective Studies
Hematopoietic Stem Cell Transplantation
Cryopreservation
Living Donors

Word Cloud

Created with Highcharts 10.0.0BMHPCsdonorsdonordeceasedlivingcellsgraftorgancryopreservationusedcelltransplantationHPCobtainedODBoneirradiatedclinicalCD34MarrowavailablehematopoieticgraftsprocessingsourceVBshealthyDeceasedmarrowcryogenicallyon-demandHCTGMPqualitycomparedaspiratediliaccrests5%cytometrypotentialchimerismimmunocompromiseddatacryopreservedOD-derivedyield1OrganDespitereadilysourcesallogeneicalloHCTsignificantunmetneedremainstimelyprovisionsuitableunrelatedshortagerelatedraritycertainHLAallelespoolnonclearanceowinginfectiousdiseasegeneralhealthstatusprolongedprocurementtimesalternativeprogenitorvertebralbodiesalleviatemanyobstaclesassociatedusingumbilicalcordbloodUCBdonor-derivedbonecanpreemptivelyscreenedbankedusemadeadequatedosesdevelopedgoodmanufacturingpractice-compliantprocessrecoverbankVB-derivedpresentresultsanalysis250identifysubstantialdifferencecompositionprocessedcentralfacilitypackagedDMSO/2humanserumalbumincomparisonportionspecimenanalyzedflowcolony-formingunitassessedNSGmiceAnalysisvarianceBonferronicorrectionmultiplecomparisonsdetermineaffectsevaluateindicatorssuccessfulengraftmentmurinemodelsttest95%confidenceintervals[CIs]comparefinaldatasetcompletematchedlaboratory226sampleslinearregressionspredictoutcomesfoundstablemaintaininghighviabilityfunctionthawingsinglesufficientaverage6patientsrange275productivelyengraftedsublethallymouse>44%>67%816weeksrespectivelyFlowsecondaryconfirmedcomposedlong-termengraftingCD34CD38CD45RACD90CD49fHSCsLinearregressionidentifiedmeaningfulpredictiveassociationsselecteddonor-relatedcharacteristicsCollectivelydemonstratepotentfunctionallyequivalentviableProspectivetrialswillsooncommencecollaborationCenterInternationalBloodResearchassessfeasibilitysafetyefficacyOssiumClinicalTrialsgovidentifierNCT05068401CharacterizationFunctionCryopreservedDonors:PotentialViableAlternativeGraftSourceCryopreservationMurineEngraftmentDonorVertebralBody

Similar Articles

Cited By (2)