Sleeve gastrectomy attenuated diabetes-related cognitive decline in diabetic rats.

Huanxin Ding, Chuxuan Liu, Shuo Zhang, Bingjun Li, Qian Xu, Bowen Shi, Songhan Li, Shuohui Dong, Xiaomin Ma, Yun Zhang, Mingwei Zhong, Guangyong Zhang
Author Information
  1. Huanxin Ding: Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
  2. Chuxuan Liu: Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
  3. Shuo Zhang: Medical Research Center, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
  4. Bingjun Li: Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China.
  5. Qian Xu: Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China.
  6. Bowen Shi: Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
  7. Songhan Li: Department of Breast Disease, Peking University People's Hospital, Beijing, China.
  8. Shuohui Dong: Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
  9. Xiaomin Ma: Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China.
  10. Yun Zhang: Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China.
  11. Mingwei Zhong: Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China.
  12. Guangyong Zhang: Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.

Abstract

Objective: To investigate the effects of sleeve gastrectomy (SG) on diabetes-related cognitive decline (DCD) in rats with diabetic mellitus (DM).
Methods and methods: Forty Wistar rats were randomly divided into control (CON) group (n=10), diabetes mellitus (DM) group (n=10), sham operation (SHAM) group (n=10) and SG group (n=10). DM model was established by high-fat diet (HFD) combined with intraperitoneal injection of streptozocin (STZ). Behavioral evaluation was given using Morris water maze test and Y-maze. In addition, PET-CT, TUNEL assay, histological analysis, transmission electron microscopy (TEM), immunohistochemistry (IHC) and Western blot analysis were used to evaluate the alleviating effects and potential mechanisms of SG on DCD in DM rats.
Results: Compared with the sham group, SG induced significant improvement in the metabolic indices such as blood glucose and body weight. Besides, it could attenuate the insulin resistance compared with SHAM group. In addition, SG could improve the cognitive function of DM rats, which were featured by significant decrease in the escape latency (P<0.05), and significant increase in the time in target quadrant and platform crossings (P<0.05) compared with the SHAM group. SG induced significant elevation in the spontaneous alternation compared with SHAM group (P<0.05). Moreover, SG could improve the arrangement and biosynthesis of hippocampus neuron. Moreover, SG triggered the inhibition of apoptosis of hippocampus neurons, and Western blot analysis showed SG induced significant increase in the ratios of Bcl-2/Bax and Caspase3/cleaved Caspase 3. TEM demonstrated SG could significantly improve the microstructure of hippocampus neurons compared with the SHAM group. Western blot and IHC confirmed the significant decrease in the phosphorylation of tau at Ser404 and Ser396 sites in the SG group. Furthermore, SG activated the PI3K signaling pathway by elevating the phosphorylation of PI3K and Akt and GSK3β compared with the SHAM group.
Conclusion: SG attenuated the DCD in DM rats, which may be related to the activation of PI3K signaling pathway.

Keywords

References

  1. Int J Priv Health Inf Manag. 2017 Jul-Dec;5(2):58-70 [PMID: 30271671]
  2. Biomed Pharmacother. 2019 Feb;110:602-608 [PMID: 30537677]
  3. Curr Atheroscler Rep. 2013 Nov;15(11):366 [PMID: 24078316]
  4. Acta Pharmacol Sin. 2021 Mar;42(3):347-360 [PMID: 33462377]
  5. Obes Surg. 2018 Aug;28(8):2421-2428 [PMID: 29500671]
  6. Ann Surg. 1995 Sep;222(3):339-50; discussion 350-2 [PMID: 7677463]
  7. Cell. 2017 Apr 20;169(3):381-405 [PMID: 28431241]
  8. Curr Diab Rep. 2016 Sep;16(9):87 [PMID: 27491830]
  9. Exp Neurol. 2019 Jan;311:33-43 [PMID: 30201537]
  10. Neural Regen Res. 2021 Dec;16(12):2465-2474 [PMID: 33907035]
  11. J Am Coll Cardiol. 2018 Feb 13;71(6):670-687 [PMID: 29420964]
  12. Brain Pathol. 2014 Apr;24(3):261-9 [PMID: 24329968]
  13. Nat Rev Endocrinol. 2018 Feb;14(2):88-98 [PMID: 29219149]
  14. Acta Diabetol. 2019 Feb;56(2):135-144 [PMID: 29959509]
  15. Brain Res. 2014 Jul 29;1574:37-49 [PMID: 24924805]
  16. Cell Physiol Biochem. 2016;39(3):901-7 [PMID: 27497670]
  17. Am Psychol. 2016 Oct;71(7):563-576 [PMID: 27690485]
  18. Expert Rev Clin Pharmacol. 2017 Apr;10(4):409-428 [PMID: 28276776]
  19. Behav Brain Res. 2018 Feb 26;339:57-65 [PMID: 29158110]
  20. Biol Trace Elem Res. 2021 Apr;199(4):1445-1455 [PMID: 32613486]
  21. Pharmacol Res. 2022 Aug;182:106358 [PMID: 35863719]
  22. PLoS One. 2017 Feb 22;12(2):e0172477 [PMID: 28225806]
  23. Brain Res. 2017 Feb 15;1657:355-360 [PMID: 27998794]
  24. Mol Neurobiol. 2019 Sep;56(9):6566-6580 [PMID: 30874972]
  25. Oxid Med Cell Longev. 2020 Sep 10;2020:4754195 [PMID: 32963694]
  26. Obes Surg. 2020 Aug;30(8):2893-2904 [PMID: 32399849]
  27. Biomed Pharmacother. 2017 Nov;95:605-613 [PMID: 28881291]
  28. Nat Rev Endocrinol. 2018 Oct;14(10):591-604 [PMID: 30022099]
  29. Saudi J Biol Sci. 2020 Feb;27(2):736-750 [PMID: 32210695]
  30. Ann N Y Acad Sci. 2015 Sep;1353:60-71 [PMID: 26132277]
  31. Brain. 2017 Nov 1;140(11):3023-3038 [PMID: 29053824]
  32. Surg Endosc. 2021 Jul;35(7):3923-3931 [PMID: 32748271]
  33. Obes Surg. 2017 Mar;27(3):795-801 [PMID: 27644433]
  34. Int J Biol Sci. 2018 Aug 6;14(11):1483-1496 [PMID: 30263000]
  35. Endocrinol Metab Clin North Am. 2013 Sep;42(3):489-501 [PMID: 24011882]
  36. Asian J Androl. 2020 Jul-Aug;22(4):409-413 [PMID: 31464204]
  37. Drug Dev Res. 2020 Apr;81(2):144-164 [PMID: 31820484]
  38. Int J Mol Sci. 2022 May 30;23(11): [PMID: 35682821]
  39. Int J Mol Sci. 2018 Dec 18;19(12): [PMID: 30567315]
  40. Pediatrics. 2019 May;143(5): [PMID: 30988024]
  41. Surg Endosc. 2020 Oct;34(10):4336-4346 [PMID: 31630290]
  42. J Alzheimers Dis. 2018;65(4):1385-1400 [PMID: 30175975]
  43. Free Radic Biol Med. 2018 May 20;120:228-238 [PMID: 29559323]
  44. Obesity (Silver Spring). 2021 Aug;29(8):1239-1241 [PMID: 34128341]
  45. J Med Chem. 2021 Jan 14;64(1):26-41 [PMID: 33346659]
  46. Nat Protoc. 2015 Mar;10(3):495-507 [PMID: 25719268]
  47. Hippocampus. 2022 Apr;32(4):253-263 [PMID: 34971006]
  48. Adv Exp Med Biol. 2019;1128:147-160 [PMID: 31062329]
  49. Int J Surg. 2020 Jun;78:36-41 [PMID: 32305534]
  50. Lancet Neurol. 2020 Aug;19(8):699-710 [PMID: 32445622]
  51. Diabetes Care. 1985 Nov-Dec;8(6):562-7 [PMID: 4075941]
  52. Front Pharmacol. 2018 Nov 22;9:1346 [PMID: 30524286]
  53. Vascul Pharmacol. 2015 Nov;74:38-48 [PMID: 26025205]
  54. Curr Diab Rep. 2019 Dec 4;19(12):156 [PMID: 31802258]
  55. Lancet. 2012 Jun 16;379(9833):2291-9 [PMID: 22683129]
  56. Arch Neurol. 2011 Jan;68(1):51-7 [PMID: 20837822]

MeSH Term

Rats
Animals
Diabetes Mellitus, Experimental
Phosphatidylinositol 3-Kinases
Rats, Wistar
Positron Emission Tomography Computed Tomography
Gastrectomy
Cognitive Dysfunction

Chemicals

Phosphatidylinositol 3-Kinases

Word Cloud

Created with Highcharts 10.0.0SGgroupratsDMSHAMsignificantcomparedcognitiven=10PI3Kgastrectomydiabetes-relateddeclineDCDanalysisWesternblotinducedimproveP<005hippocampuseffectssleevediabeticmellitusshamadditionTEMIHCdecreaseincreaseMoreoverapoptosisneuronsphosphorylationtausignalingpathwayattenuatedObjective:investigateMethodsmethods:FortyWistarrandomlydividedcontrolCONdiabetesoperationmodelestablishedhigh-fatdietHFDcombinedintraperitonealinjectionstreptozocinSTZBehavioralevaluationgivenusingMorriswatermazetestY-mazePET-CTTUNELassayhistologicaltransmissionelectronmicroscopyimmunohistochemistryusedevaluatealleviatingpotentialmechanismsResults:ComparedimprovementmetabolicindicesbloodglucosebodyweightBesidesattenuateinsulinresistancefunctionfeaturedescapelatencytimetargetquadrantplatformcrossingselevationspontaneousalternationarrangementbiosynthesisneurontriggeredinhibitionshowedratiosBcl-2/BaxCaspase3/cleavedCaspase3demonstratedsignificantlymicrostructureconfirmedSer404Ser396sitesFurthermoreactivatedelevatingAktGSK3βConclusion:mayrelatedactivationSleeveneuronal

Similar Articles

Cited By