Comprehensive shape analysis of the cortex in Huntington's disease.

Zachary A Stoebner, Kilian Hett, Ilwoo Lyu, Hans Johnson, Jane S Paulsen, Jeffrey D Long, Ipek Oguz
Author Information
  1. Zachary A Stoebner: Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA. ORCID
  2. Kilian Hett: Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA. ORCID
  3. Ilwoo Lyu: Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA.
  4. Hans Johnson: Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, USA.
  5. Jane S Paulsen: Department of Neurology, University of Wisconsin, Madison, Wisconsin, USA.
  6. Jeffrey D Long: Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA.
  7. Ipek Oguz: Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA.

Abstract

The striatum has traditionally been the focus of Huntington's disease research due to the primary insult to this region and its central role in motor symptoms. Beyond the striatum, evidence of cortical alterations caused by Huntington's disease has surfaced. However, findings are not coherent between studies which have used cortical thickness for Huntington's disease since it is the well-established cortical metric of interest in other diseases. In this study, we propose a more comprehensive approach to cortical morphology in Huntington's disease using cortical thickness, sulcal depth, and local gyrification index. Our results show consistency with prior findings in cortical thickness, including its limitations. Our comparison between cortical thickness and local gyrification index underscores the complementary nature of these two measures-cortical thickness detects changes in the sensorimotor and posterior areas while local gyrification index identifies insular differences. Since local gyrification index and cortical thickness measures detect changes in different regions, the two used in tandem could provide a clinically relevant measure of disease progression. Our findings suggest that differences in insular regions may correspond to earlier neurodegeneration and may provide a complementary cortical measure for detection of subtle early cortical changes due to Huntington's disease.

Keywords

References

  1. Neurobiol Dis. 2010 Dec;40(3):544-54 [PMID: 20688164]
  2. IEEE Trans Med Imaging. 2018 Jul;37(7):1653-1663 [PMID: 29969416]
  3. Neurotherapeutics. 2012 Apr;9(2):270-84 [PMID: 22441874]
  4. Am J Hum Genet. 2018 Sep 6;103(3):349-357 [PMID: 30122542]
  5. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11050-5 [PMID: 10984517]
  6. Lancet Neurol. 2009 Sep;8(9):791-801 [PMID: 19646924]
  7. Proc SPIE Int Soc Opt Eng. 2021 Feb;11596: [PMID: 34873359]
  8. Neuroimage. 2006 Aug 1;32(1):180-94 [PMID: 16651008]
  9. MLCN Workshop (2020). 2020 Oct;12449:139-147 [PMID: 35695832]
  10. J Neurol Neurosurg Psychiatry. 2008 Aug;79(8):874-80 [PMID: 18096682]
  11. Neuroimage. 2012 Aug 15;62(2):774-81 [PMID: 22248573]
  12. Proc SPIE Int Soc Opt Eng. 2021 Feb;11596: [PMID: 34873358]
  13. Brain Res Bull. 2010 May 31;82(3-4):201-7 [PMID: 20385209]
  14. J Vis Exp. 2018 Jun 9;(136): [PMID: 29939188]
  15. Lancet Neurol. 2020 Jun;19(6):502-512 [PMID: 32470422]
  16. Hum Brain Mapp. 1999;8(2-3):98-101 [PMID: 10524599]
  17. Neurosci Lett. 1991 Dec 9;133(2):257-61 [PMID: 1840078]
  18. Am J Psychiatry. 2007 Sep;164(9):1428-34 [PMID: 17728429]
  19. Med Image Anal. 2019 Oct;57:72-88 [PMID: 31280090]
  20. J Huntingtons Dis. 2021;10(1):35-51 [PMID: 33579862]
  21. Lancet Neurol. 2014 Dec;13(12):1193-201 [PMID: 25453459]
  22. Neuroimage. 2006 Jul 15;31(4):1560-6 [PMID: 16600639]
  23. Brain. 2004 Jun;127(Pt 6):1446-53 [PMID: 15090475]
  24. Hum Brain Mapp. 2018 Oct;39(10):3871-3883 [PMID: 29797744]
  25. Hum Brain Mapp. 2023 Mar;44(4):1417-1431 [PMID: 36409662]
  26. Med Image Comput Comput Assist Interv. 2019 Oct;11766:501-509 [PMID: 31803864]
  27. Neurology. 2002 Mar 12;58(5):695-701 [PMID: 11889230]
  28. Neuroimage Clin. 2020;26:102211 [PMID: 32113174]
  29. Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1091-1095 [PMID: 34873434]
  30. Lancet. 2007 Jan 20;369(9557):218-28 [PMID: 17240289]
  31. Hum Brain Mapp. 2019 Apr 1;40(5):1419-1433 [PMID: 30376191]
  32. Am J Med Genet B Neuropsychiatr Genet. 2011 Dec;156B(7):751-63 [PMID: 21858921]
  33. Proc SPIE Int Soc Opt Eng. 2018 Mar;10574: [PMID: 29887663]
  34. Med Image Anal. 2018 Aug;48:244-258 [PMID: 29990689]

Grants

  1. R01 NS040068/NINDS NIH HHS
  2. R01 NS094456/NINDS NIH HHS
  3. U01 NS103475/NINDS NIH HHS
  4. U01 NS105509/NINDS NIH HHS
  5. MR/P001629/1/Medical Research Council
  6. MR/L010305/1/Medical Research Council

MeSH Term

Humans
Huntington Disease
Cerebral Cortex
Magnetic Resonance Imaging
Neocortex

Word Cloud

Created with Highcharts 10.0.0corticaldiseaseHuntington'sthicknesslocalgyrificationindexfindingschangesstriatumdueusedcomplementarytwoinsulardifferencesregionsprovidemeasuremayshapeanalysistraditionallyfocusresearchprimaryinsultregioncentralrolemotorsymptomsBeyondevidencealterationscausedsurfacedHowevercoherentstudiessincewell-establishedmetricinterestdiseasesstudyproposecomprehensiveapproachmorphologyusingsulcaldepthresultsshowconsistencypriorincludinglimitationscomparisonunderscoresnaturemeasures-corticaldetectssensorimotorposteriorareasidentifiesSincemeasuresdetectdifferenttandemclinicallyrelevantprogressionsuggestcorrespondearlierneurodegenerationdetectionsubtleearlyComprehensivecortex

Similar Articles

Cited By