EBF1 is continuously required for stabilizing local chromatin accessibility in pro-B cells.

Nikolay Zolotarev, Marc Bayer, Rudolf Grosschedl
Author Information
  1. Nikolay Zolotarev: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany. ORCID
  2. Marc Bayer: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany.
  3. Rudolf Grosschedl: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany. ORCID

Abstract

The establishment of de novo chromatin accessibility in lymphoid progenitors requires the "pioneering" function of transcription factor (TF) early B cell factor 1 (EBF1), which binds to naïve chromatin and induces accessibility by recruiting the BRG1 chromatin remodeler subunit. However, it remains unclear whether the function of EBF1 is continuously required for stabilizing local chromatin accessibility. To this end, we replaced EBF1 by EBF1-FKBP in pro-B cells, allowing the rapid degradation by adding the degradation TAG13 (dTAG13) dimerizer. EBF1 degradation results in a loss of genome-wide EBF1 occupancy and EBF1-targeted BRG1 binding. Chromatin accessibility was rapidly diminished at EBF1-binding sites with a preference for sites whose occupancy requires the pioneering activity of the C-terminal domain of EBF1. Diminished chromatin accessibility correlated with altered gene expression. Thus, continuous activity of EBF1 is required for the stable maintenance of the transcriptional and epigenetic state of pro-B cells.

Keywords

References

  1. Mol Cell. 2018 Jul 19;71(2):294-305.e4 [PMID: 30017582]
  2. Nature. 2020 Apr;580(7805):669-672 [PMID: 32350470]
  3. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  4. Epigenetics Chromatin. 2019 Jun 4;12(1):33 [PMID: 31164147]
  5. Nat Immunol. 2013 Aug;14(8):867-75 [PMID: 23812095]
  6. Genome Res. 2011 Oct;21(10):1650-8 [PMID: 21795385]
  7. Annu Rev Genet. 2020 Nov 23;54:367-385 [PMID: 32886547]
  8. Mol Cell Biol. 2002 Dec;22(24):8539-51 [PMID: 12446773]
  9. Immunol Rev. 2014 Sep;261(1):102-15 [PMID: 25123279]
  10. Nat Genet. 2021 Mar;53(3):279-287 [PMID: 33558757]
  11. Nat Immunol. 2008 Feb;9(2):203-15 [PMID: 18176567]
  12. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  13. Nat Immunol. 2010 Jul;11(7):635-43 [PMID: 20543837]
  14. Bioinformatics. 2019 Nov 1;35(22):4757-4759 [PMID: 31134269]
  15. Mol Cell. 2021 Apr 15;81(8):1640-1650 [PMID: 33689750]
  16. Nat Cell Biol. 2020 Jun;22(6):651-662 [PMID: 32393886]
  17. Nat Genet. 2018 Feb;50(2):250-258 [PMID: 29358654]
  18. Immunity. 2020 Dec 15;53(6):1151-1167.e6 [PMID: 33159853]
  19. Elife. 2019 Dec 03;8: [PMID: 31794382]
  20. EMBO J. 2012 Jun 05;31(14):3130-46 [PMID: 22669466]
  21. Mol Immunol. 2004 Nov;41(12):1145-53 [PMID: 15482850]
  22. Science. 2007 May 11;316(5826):860-6 [PMID: 17495164]
  23. Genes Dev. 2018 Jan 15;32(2):96-111 [PMID: 29440261]
  24. Elife. 2017 Mar 13;6: [PMID: 28287392]
  25. Sci Adv. 2015 Jun 12;1(5):e1500447 [PMID: 26601204]
  26. J Exp Med. 2018 Jul 2;215(7):1947-1963 [PMID: 29899037]
  27. J Biol Chem. 2018 Sep 7;293(36):13795-13804 [PMID: 29507097]
  28. Mol Cell. 2019 Apr 4;74(1):185-195.e4 [PMID: 30797686]
  29. Nat Immunol. 2014 Mar;15(3):283-93 [PMID: 24509509]
  30. Annu Rev Immunol. 2014;32:283-321 [PMID: 24471430]
  31. Nat Chem Biol. 2018 May;14(5):431-441 [PMID: 29581585]
  32. STAR Protoc. 2021 May 19;2(2):100530 [PMID: 34041503]
  33. Biochemistry. 2021 Aug 10;60(31):2387-2396 [PMID: 34292716]
  34. Nat Immunol. 2004 Oct;5(10):1069-77 [PMID: 15361869]
  35. Nat Immunol. 2015 Jul;16(7):775-84 [PMID: 25985234]
  36. Cell. 2012 Dec 21;151(7):1608-16 [PMID: 23260146]
  37. Bioessays. 2016 Nov;38(11):1150-1157 [PMID: 27633730]
  38. Nat Methods. 2009 Dec;6(12):917-22 [PMID: 19915560]
  39. Immunity. 2007 Jun;26(6):715-25 [PMID: 17582344]
  40. Mol Cell Biol. 2007 Jan;27(2):579-94 [PMID: 17101802]
  41. Immunity. 1999 Jul;11(1):21-31 [PMID: 10435576]
  42. Development. 2016 Jun 1;143(11):1833-7 [PMID: 27246709]
  43. PLoS Genet. 2016 Feb 22;12(2):e1005845 [PMID: 26900922]
  44. Nat Immunol. 2008 Aug;9(8):927-36 [PMID: 18568028]
  45. J Immunol. 2017 Feb 15;198(4):1565-1574 [PMID: 28062693]
  46. Immunity. 2010 May 28;32(5):714-25 [PMID: 20451411]
  47. Immunity. 2016 Mar 15;44(3):527-541 [PMID: 26982363]
  48. Nat Genet. 2020 Apr;52(4):418-427 [PMID: 32203463]
  49. Nat Struct Mol Biol. 2011 Nov 06;18(12):1435-40 [PMID: 22056773]
  50. Nat Genet. 2021 Mar;53(3):269-278 [PMID: 33558760]

MeSH Term

Chromatin
Precursor Cells, B-Lymphoid
Epigenomics
Binding Sites
Cell Count

Chemicals

Chromatin

Word Cloud

Created with Highcharts 10.0.0EBF1chromatinaccessibilityBRG1requiredpro-BcellsdegradationrequiresfunctionfactorBcellcontinuouslystabilizinglocaloccupancysitesactivityestablishmentdenovolymphoidprogenitors"pioneering"transcriptionTFearly1bindsnaïveinducesrecruitingremodelersubunitHoweverremainsunclearwhetherendreplacedEBF1-FKBPallowingrapidaddingTAG13dTAG13dimerizerresultslossgenome-wideEBF1-targetedbindingChromatinrapidlydiminishedEBF1-bindingpreferencewhosepioneeringC-terminaldomainDiminishedcorrelatedalteredgeneexpressionThuscontinuousstablemaintenancetranscriptionalepigeneticstatedTAG

Similar Articles

Cited By