Ketamine impairs growth cone and synaptogenesis in human GABAergic projection neurons via GSK-3β and HDAC6 signaling.

Xuan Li, Hexige Saiyin, Xinyu Chen, Qiong Yu, Lixiang Ma, Weimin Liang
Author Information
  1. Xuan Li: Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China.
  2. Hexige Saiyin: State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
  3. Xinyu Chen: Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China. ORCID
  4. Qiong Yu: Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China. yu_qiong816@sina.com. ORCID
  5. Lixiang Ma: Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China. lxma@fudan.edu.cn.
  6. Weimin Liang: Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China. chiefliang@sina.cn.

Abstract

The growth cone guides the axon or dendrite of striatal GABAergic projection neurons that protrude into the midbrain and cortex and form complex neuronal circuits and synaptic networks in a developing brain, aberrant projections and synaptic connections in the striatum related to multiple brain disorders. Previously, we showed that ketamine, an anesthetic, reduced dendritic growth, dendritic branches, and spine density in human striatal GABAergic neurons. However, whether ketamine affects the growth cone, the synaptic connection of growing striatal GABAergic neurons has not been tested. Using human GABAergic projection neurons derived from human inducible pluripotent stem cells (hiPSCs) and embryonic stem cells (ES) in vitro, we tested ketamine effects on the growth cones and synapses in developing GABAergic neurons by assessing the morphometry and the glycogen synthase kinase-3 (GSK-3) and histone deacetylase 6 (HDAC6) pathway. Ketamine exposure impairs growth cone formation, synaptogenesis, dendritic development, and maturation via ketamine-mediated activation of GSK-3 pathways and inhibiting HDAC6, an essential stabilizing protein for dendritic morphogenesis and synapse maturation. Our findings identified a novel ketamine neurotoxic pathway that depends on GSK-3β and HDAC6 signaling, suggesting that microtubule acetylation is a potential target for reducing ketamine's toxic effect on GABAergic projection neuronal development.

References

  1. Nat Rev Neurosci. 2010 Aug;11(8):539-51 [PMID: 20648061]
  2. Front Neurosci. 2018 Nov 29;12:872 [PMID: 30555293]
  3. ACS Chem Neurosci. 2017 Dec 20;8(12):2586-2595 [PMID: 29077387]
  4. Neurochem Res. 2007 Feb;32(2):187-95 [PMID: 16933150]
  5. Cereb Cortex. 2020 Apr 14;30(4):2358-2371 [PMID: 31812984]
  6. Stem Cell Reports. 2019 Mar 5;12(3):502-517 [PMID: 30773488]
  7. J Cell Biochem. 2012 Jun;113(6):1842-51 [PMID: 22234988]
  8. Int J Mol Sci. 2020 Nov 09;21(21): [PMID: 33182497]
  9. Transl Psychiatry. 2015 Sep 15;5:e635 [PMID: 26371763]
  10. Chemosphere. 2019 Jan;214:430-435 [PMID: 30273876]
  11. Protein Cell. 2010 Jun;1(6):552-62 [PMID: 21204008]
  12. Cold Spring Harb Perspect Biol. 2011 Mar 01;3(3): [PMID: 21106647]
  13. Annu Rev Neurosci. 2011;34:441-66 [PMID: 21469956]
  14. Pain. 2017 Jun;158(6):1126-1137 [PMID: 28267067]
  15. Brain Res. 2011 Apr 6;1383:300-6 [PMID: 21281610]
  16. Mol Psychiatry. 2015 Apr;20(4):482-9 [PMID: 24912492]
  17. Nature. 2017 Jun 21;546(7659):E1-E3 [PMID: 28640258]
  18. Anesthesiology. 1973 Oct;39(4):370-6 [PMID: 4758343]
  19. Trends Neurosci. 2019 Mar;42(3):205-220 [PMID: 30621912]
  20. Nat Commun. 2020 Jan 7;11(1):72 [PMID: 31911591]
  21. Mol Psychiatry. 2018 Jan;23(1):59-69 [PMID: 28972576]
  22. PLoS One. 2013;8(3):e57054 [PMID: 23469183]
  23. Br J Anaesth. 2014 Sep;113(3):443-51 [PMID: 24431386]
  24. Brain. 2018 Mar 1;141(3):673-687 [PMID: 29415205]
  25. Neurobiol Dis. 2014 Aug;68:145-55 [PMID: 24780497]
  26. eNeuro. 2018 Feb 28;5(1): [PMID: 29497702]
  27. Neuropsychopharmacology. 2019 Jan;44(1):220-221 [PMID: 30214059]
  28. Neuron. 2008 Nov 26;60(4):543-54 [PMID: 19038213]
  29. Mol Cell Neurosci. 2017 Oct;84:4-10 [PMID: 28268126]
  30. Neuropsychopharmacology. 2013 Oct;38(11):2268-77 [PMID: 23680942]
  31. J Biomed Sci. 2019 Apr 18;26(1):27 [PMID: 30999900]
  32. Acta Pharmacol Sin. 2021 Jun;42(6):861-870 [PMID: 32939037]
  33. Schizophr Bull. 2018 Feb 15;44(2):419-431 [PMID: 28605528]
  34. Curr Opin Neurobiol. 2015 Feb;30:59-65 [PMID: 25241072]
  35. Neurobiol Dis. 2020 Nov;145:105076 [PMID: 32898646]
  36. Magn Reson Imaging. 2017 Nov;43:144-150 [PMID: 28755862]
  37. Nat Commun. 2013;4:2628 [PMID: 24165455]
  38. J Neurosci. 2015 Oct 21;35(42):14205-19 [PMID: 26490861]
  39. Am J Respir Cell Mol Biol. 2016 May;54(5):683-96 [PMID: 26452072]
  40. Mol Pain. 2016 May 16;12: [PMID: 27184142]
  41. PLoS One. 2010 May 26;5(5):e10848 [PMID: 20520769]
  42. Cell Rep. 2019 Nov 12;29(7):2016-2027.e4 [PMID: 31722214]
  43. Naunyn Schmiedebergs Arch Pharmacol. 2018 Dec;391(12):1327-1338 [PMID: 30083945]
  44. Dev Neurosci. 2002;24(5):418-25 [PMID: 12640181]
  45. Elife. 2014 Jul 29;3:e02663 [PMID: 25073924]
  46. Nat Rev Neurosci. 2013 Sep;14(9):609-25 [PMID: 23942470]
  47. Mol Cancer Res. 2019 Jan;17(1):225-237 [PMID: 30224543]
  48. Cell Cycle. 2008 Sep 1;7(17):2621-5 [PMID: 18728390]
  49. Nat Med. 2020 Apr;26(4):558-565 [PMID: 32251404]
  50. Anesth Analg. 2005 Aug;101(2):524-534 [PMID: 16037171]
  51. Addict Biol. 2014 Mar;19(2):185-94 [PMID: 23145560]
  52. Sci Rep. 2018 Apr 24;8(1):6464 [PMID: 29691465]
  53. Mol Med Rep. 2018 Dec;18(6):5037-5043 [PMID: 30280188]
  54. Bioarchitecture. 2013 Jul-Aug;3(4):86-109 [PMID: 24002528]
  55. Mol Psychiatry. 2013 Apr;18(4):451-60 [PMID: 23399915]
  56. Curr Opin Neurobiol. 2020 Aug;63:9-14 [PMID: 32062144]
  57. Neuromolecular Med. 2018 Mar;20(1):54-62 [PMID: 29218434]
  58. J Anesth. 2007;21(4):535-7 [PMID: 18008133]
  59. Crit Care Med. 2012 Aug;40(8):2518-9 [PMID: 22809932]
  60. Cytotherapy. 2020 Feb;22(2):91-105 [PMID: 31980369]
  61. Front Cell Neurosci. 2019 Oct 23;13:447 [PMID: 31749684]
  62. Endocr Relat Cancer. 2013 May 21;20(3):321-37 [PMID: 23507703]
  63. Int J Alzheimers Dis. 2011;2011:189728 [PMID: 21660241]
  64. J Neurosci. 2008 May 14;28(20):5383-93 [PMID: 18480294]
  65. PLoS One. 2010 Sep 23;5(9):e12908 [PMID: 20886111]
  66. FEBS J. 2013 Feb;280(3):775-93 [PMID: 23181831]
  67. Exp Neurol. 2019 Jun;316:52-62 [PMID: 30981804]
  68. Cell Death Dis. 2018 May 29;9(6):655 [PMID: 29844403]
  69. J Cell Sci. 2009 Oct 1;122(Pt 19):3531-41 [PMID: 19737819]
  70. Prog Brain Res. 2007;160:3-7 [PMID: 17499105]
  71. Cell Stem Cell. 2012 Apr 6;10(4):455-64 [PMID: 22424902]
  72. Mol Psychiatry. 2017 Apr;22(4):562-569 [PMID: 27480494]
  73. Sci Rep. 2019 Nov 5;9(1):15981 [PMID: 31690738]
  74. Curr Opin Neurobiol. 2003 Feb;13(1):50-6 [PMID: 12593982]
  75. Front Neuroanat. 2011 Sep 07;5:59 [PMID: 21941467]
  76. PLoS One. 2013;8(3):e59804 [PMID: 23555787]
  77. Sci Rep. 2016 May 26;6:26865 [PMID: 27226073]

Grants

  1. 82171188/National Natural Science Foundation of China (National Science Foundation of China)
  2. 82201329/National Natural Science Foundation of China (National Science Foundation of China)

MeSH Term

Ketamine
Humans
Glycogen Synthase Kinase 3 beta
GABAergic Neurons
Synapses
Histone Deacetylase 6
Growth Cones
Signal Transduction
Neurogenesis
Induced Pluripotent Stem Cells
Embryonic Stem Cells
Dendrites
Corpus Striatum

Chemicals

Ketamine
Glycogen Synthase Kinase 3 beta
Histone Deacetylase 6
HDAC6 protein, human

Word Cloud

Created with Highcharts 10.0.0GABAergicgrowthneuronsconeprojectionketaminedendritichumanHDAC6striatalsynapticneuronaldevelopingbraintestedstemcellsGSK-3pathwayKetamineimpairssynaptogenesisdevelopmentmaturationviaGSK-3βsignalingguidesaxondendriteprotrudemidbraincortexformcomplexcircuitsnetworksaberrantprojectionsconnectionsstriatumrelatedmultipledisordersPreviouslyshowedanestheticreducedbranchesspinedensityHoweverwhetheraffectsconnectiongrowingUsingderivedinduciblepluripotenthiPSCsembryonicESvitroeffectsconessynapsesassessingmorphometryglycogensynthasekinase-3histonedeacetylase6exposureformationketamine-mediatedactivationpathwaysinhibitingessentialstabilizingproteinmorphogenesissynapsefindingsidentifiednovelneurotoxicdependssuggestingmicrotubuleacetylationpotentialtargetreducingketamine'stoxiceffect

Similar Articles

Cited By