MYC regulates a pan-cancer network of co-expressed oncogenic splicing factors.

Laura Urbanski, Mattia Brugiolo, SungHee Park, Brittany L Angarola, Nathan K Leclair, Marina Yurieva, Phil Palmer, Sangram Keshari Sahu, Olga Anczuków
Author Information
  1. Laura Urbanski: The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA.
  2. Mattia Brugiolo: The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
  3. SungHee Park: The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
  4. Brittany L Angarola: The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
  5. Nathan K Leclair: The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA.
  6. Marina Yurieva: The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
  7. Phil Palmer: Lifebit, London, UK.
  8. Sangram Keshari Sahu: Lifebit, London, UK.
  9. Olga Anczuków: The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA. Electronic address: olga.anczukow@jax.org.

Abstract

MYC is dysregulated in >50% of cancers, but direct targeting of MYC has been clinically unsuccessful. Targeting downstream MYC effector pathways represents an attractive alternative. MYC regulates alternative mRNA splicing, but the mechanistic links between MYC and the splicing machinery in cancer remain underexplored. Here, we identify a network of co-expressed splicing factors (SF-modules) in MYC-active breast tumors. Of these, one is a pan-cancer SF-module correlating with MYC activity across 33 tumor types. In mammary cell models, MYC activation leads to co-upregulation of pan-cancer module SFs and to changes in >4,000 splicing events. In breast cancer organoids, co-overexpression of the pan-cancer SF-module induces MYC-regulated splicing events and increases organoid size and invasiveness, while knockdown decreases organoid size. Finally, we uncover a MYC-activity pan-cancer splicing signature correlating with survival across tumor types. Our findings provide insight into the mechanisms of MYC-regulated splicing and for the development of therapeutics for MYC-driven tumors.

Keywords

References

  1. Breast Cancer Res. 2005;7(2):R220-8 [PMID: 15743499]
  2. Cell. 2018 Apr 5;173(2):400-416.e11 [PMID: 29625055]
  3. Nature. 2019 May;569(7757):503-508 [PMID: 31068700]
  4. Nat Commun. 2020 Jun 12;11(1):2973 [PMID: 32532987]
  5. PLoS One. 2009 Aug 19;4(8):e6693 [PMID: 19690609]
  6. Cancer Res. 2017 Feb 15;77(4):971-981 [PMID: 27923830]
  7. PLoS Comput Biol. 2019 Mar 5;15(3):e1006701 [PMID: 30835723]
  8. Nature. 2020 Jul;583(7818):711-719 [PMID: 32728246]
  9. Signal Transduct Target Ther. 2018 Feb 23;3:5 [PMID: 29527331]
  10. Mol Cell. 2004 Nov 19;16(4):597-607 [PMID: 15546619]
  11. Cell. 1989 Aug 11;58(3):461-72 [PMID: 2667764]
  12. RNA. 1999 Mar;5(3):468-83 [PMID: 10094314]
  13. Biomolecules. 2017 Jul 11;7(3): [PMID: 28696357]
  14. Cancer Cell. 2019 Mar 18;35(3):369-384.e7 [PMID: 30799057]
  15. Cell Rep. 2012 Feb 23;1(2):110-7 [PMID: 22545246]
  16. Sci Adv. 2022 Jan 21;8(3):eabg6711 [PMID: 35044822]
  17. Nat Struct Mol Biol. 2007 Mar;14(3):185-93 [PMID: 17310252]
  18. Cancer Cell. 2015 May 11;27(5):617-30 [PMID: 25965569]
  19. Nat Struct Mol Biol. 2012 Jan 15;19(2):220-8 [PMID: 22245967]
  20. RNA. 2015 Jan;21(1):75-92 [PMID: 25414008]
  21. ACS Chem Biol. 2017 Mar 17;12(3):825-832 [PMID: 28135068]
  22. Biochem J. 2009 Jan 1;417(1):15-27 [PMID: 19061484]
  23. Nature. 2008 Oct 2;455(7213):679-83 [PMID: 18716624]
  24. Genes Dev. 1998 Jan 1;12(1):55-66 [PMID: 9420331]
  25. Nat Struct Mol Biol. 2020 Mar;27(3):260-273 [PMID: 32123389]
  26. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  27. Cell Chem Biol. 2018 Apr 19;25(4):460-470.e6 [PMID: 29478907]
  28. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  29. PLoS Biol. 2007 Apr;5(4):e73 [PMID: 17355180]
  30. Sci Rep. 2021 Apr 12;11(1):7963 [PMID: 33846420]
  31. Nat Rev Clin Oncol. 2020 Aug;17(8):457-474 [PMID: 32303702]
  32. Genome Biol. 2021 Jan 22;22(1):44 [PMID: 33482911]
  33. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  34. Cancer Res. 2003 Sep 1;63(17):5178-87 [PMID: 14500341]
  35. Methods. 2003 Jul;30(3):256-68 [PMID: 12798140]
  36. Pharmacol Rev. 2017 Jan;69(1):63-79 [PMID: 28034912]
  37. Nucleic Acids Res. 2013 Jan;41(Database issue):D132-41 [PMID: 23118483]
  38. RNA. 2009 Mar;15(3):367-76 [PMID: 19155327]
  39. F1000Res. 2016 Jun 29;5:1542 [PMID: 28232861]
  40. Nature. 2012 Oct 4;490(7418):61-70 [PMID: 23000897]
  41. Genes Dev. 2014 Jun 1;28(11):1191-203 [PMID: 24840202]
  42. Bioinformatics. 2020 Jul 1;36(Suppl_1):i474-i481 [PMID: 32657410]
  43. Science. 2017 Apr 28;356(6336): [PMID: 28302793]
  44. Cell Rep. 2019 Nov 26;29(9):2672-2688.e7 [PMID: 31775037]
  45. Nat Commun. 2020 Jan 24;11(1):486 [PMID: 31980632]
  46. Cancer Cell. 2018 Aug 13;34(2):211-224.e6 [PMID: 30078747]
  47. Nat Biotechnol. 2017 Apr;35(4):350-353 [PMID: 28263295]
  48. JCO Precis Oncol. 2018 Mar 09;2: [PMID: 32913985]
  49. Nature. 1989 Jul 6;340(6228):66-8 [PMID: 2662015]
  50. Sci Rep. 2019 Apr 2;9(1):5484 [PMID: 30940821]
  51. Nat Rev Cancer. 2015 Oct;15(10):593-607 [PMID: 26383138]
  52. Nature. 2015 Jul 2;523(7558):96-100 [PMID: 25970242]
  53. Nature. 2020 Feb;578(7793):82-93 [PMID: 32025007]
  54. Elife. 2014 May 6;:e02028 [PMID: 24842991]
  55. Oncol Lett. 2018 Apr;15(4):5545-5552 [PMID: 29556298]
  56. Nucleic Acids Res. 2018 Jan 4;46(D1):D794-D801 [PMID: 29126249]
  57. Cold Spring Harb Perspect Med. 2014 Jan 01;4(1):a014357 [PMID: 24384812]
  58. Mol Cell Biol. 2016 May 16;36(11):1704-19 [PMID: 27044866]
  59. Mol Cell. 2020 Nov 19;80(4):648-665.e9 [PMID: 33176162]
  60. PLoS One. 2009 Dec 30;4(12):e8513 [PMID: 20046837]
  61. Nature. 2013 Jul 11;499(7457):172-7 [PMID: 23846655]
  62. Cancer Res. 2006 May 1;66(9):4591-601 [PMID: 16651409]
  63. Nature. 2020 Jul;583(7818):699-710 [PMID: 32728249]
  64. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  65. Nat Biotechnol. 2011 Jan;29(1):79-83 [PMID: 21131983]
  66. Genome Biol. 2020 Apr 6;21(1):90 [PMID: 32252787]
  67. Nature. 2010 Feb 18;463(7283):899-905 [PMID: 20164920]
  68. Nature. 2010 Jan 21;463(7279):364-8 [PMID: 20010808]
  69. Genes Cancer. 2010 Jun;1(6):629-40 [PMID: 21779462]
  70. Cold Spring Harb Perspect Med. 2014 Jun 02;4(6): [PMID: 24890832]
  71. Nature. 2012 Sep 6;489(7414):57-74 [PMID: 22955616]
  72. Cell Syst. 2015 Dec 23;1(6):417-425 [PMID: 26771021]
  73. Nat Rev Cancer. 2016 Jul;16(7):413-30 [PMID: 27282250]
  74. Int J Biol Sci. 2010 Dec 15;6(7):806-26 [PMID: 21179588]
  75. Mol Cell. 2001 Apr;7(4):899-905 [PMID: 11336712]
  76. Nature. 2015 Sep 17;525(7569):384-8 [PMID: 26331541]
  77. Sci Rep. 2020 Oct 5;10(1):16504 [PMID: 33020551]
  78. J Stat Softw. 2012 Mar;46(11): [PMID: 23050260]
  79. NAR Cancer. 2021 May 25;3(2):zcab019 [PMID: 34316707]
  80. Mol Cell. 2012 Feb 24;45(4):567-80 [PMID: 22365833]
  81. Bioinformatics. 2015 Jul 15;31(14):2382-3 [PMID: 25765347]
  82. Nat Commun. 2016 May 03;7:11246 [PMID: 27138336]
  83. Cancer Cell Int. 2020 Apr 10;20:120 [PMID: 32308565]
  84. Nucleic Acids Res. 1995 May 25;23(10):1686-90 [PMID: 7784172]
  85. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  86. J Med Invest. 2016;63(3-4):219-26 [PMID: 27644562]
  87. Mol Ther Nucleic Acids. 2021 Nov 03;26:1215-1227 [PMID: 34853721]
  88. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W361-7 [PMID: 24829458]
  89. Cancer Res. 2017 Mar 1;77(5):1168-1178 [PMID: 28082404]
  90. PLoS Genet. 2011 Aug;7(8):e1002218 [PMID: 21876675]
  91. Wiley Interdiscip Rev RNA. 2018 Jul;9(4):e1476 [PMID: 29693319]
  92. Nucleic Acids Res. 2019 Jan 8;47(D1):D766-D773 [PMID: 30357393]
  93. Nucleic Acids Res. 2016 May 5;44(8):e71 [PMID: 26704973]
  94. Elife. 2021 Jun 02;10: [PMID: 34075878]
  95. Gastric Cancer. 2020 Sep;23(5):796-810 [PMID: 32333232]
  96. Biomed Pharmacother. 2019 Jun;114:108772 [PMID: 30909144]
  97. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  98. Cell Syst. 2016 Jul;3(1):71-82 [PMID: 27467248]
  99. Sci Rep. 2016 Oct 17;6:35298 [PMID: 27748415]
  100. EMBO Mol Med. 2018 Jun;10(6): [PMID: 29769258]
  101. Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5269-5279 [PMID: 32086391]
  102. Nat Rev Drug Discov. 2012 Nov;11(11):847-59 [PMID: 23123942]
  103. Nat Commun. 2020 Apr 29;11(1):2089 [PMID: 32350277]
  104. Semin Cancer Biol. 2006 Aug;16(4):288-302 [PMID: 16938463]
  105. Cell. 2017 Jul 27;170(3):564-576.e16 [PMID: 28753430]
  106. Trends Biochem Sci. 2000 Aug;25(8):381-8 [PMID: 10916158]
  107. Cancer Res. 2019 Oct 15;79(20):5288-5301 [PMID: 31462429]
  108. J Biol Chem. 2015 Apr 10;290(15):9387-98 [PMID: 25713138]
  109. Cell. 2021 Jan 21;184(2):384-403.e21 [PMID: 33450205]
  110. Nucleic Acids Res. 2011 Jan;39(Database issue):D301-8 [PMID: 21036867]
  111. Wiley Interdiscip Rev RNA. 2015 Jan-Feb;6(1):93-110 [PMID: 25155147]
  112. Mol Cell. 2018 Jun 7;70(5):854-867.e9 [PMID: 29883606]
  113. Genes Dev. 2016 Mar 1;30(5):553-66 [PMID: 26944680]
  114. Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):E5593-601 [PMID: 25480548]
  115. Genes Dev. 2013 May 1;27(9):1032-45 [PMID: 23651857]
  116. J Virol. 2016 Sep 29;90(20):9138-52 [PMID: 27489271]
  117. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  118. J Cell Biochem. 2020 Jan;121(1):672-689 [PMID: 31407370]
  119. Cancer Cell. 2020 Aug 10;38(2):198-211.e8 [PMID: 32559497]
  120. Genes Dev. 2004 Apr 1;18(7):755-68 [PMID: 15082528]
  121. Mol Cell. 2021 Apr 1;81(7):1453-1468.e12 [PMID: 33662273]
  122. Cell Struct Funct. 2019;44(1):29-39 [PMID: 30787206]
  123. Front Cell Dev Biol. 2017 Feb 23;5:10 [PMID: 28280720]
  124. Surg Oncol Clin N Am. 2014 Jul;23(3):567-77 [PMID: 24882351]
  125. Genome Res. 2016 Jun;26(6):732-44 [PMID: 27197215]
  126. Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16391-16400 [PMID: 32601196]
  127. Brain Res. 1976 Dec 24;118(3):475-8 [PMID: 1009431]

Grants

  1. T32 AG062409/NIA NIH HHS
  2. P30 CA034196/NCI NIH HHS
  3. R00 CA178206/NCI NIH HHS
  4. R01 CA248317/NCI NIH HHS
  5. R01 GM138541/NIGMS NIH HHS

MeSH Term

Female
Humans
Breast Neoplasms
Carcinogenesis
Oncogenes
Proto-Oncogene Proteins c-myc
RNA Splicing
RNA Splicing Factors

Chemicals

Proto-Oncogene Proteins c-myc
RNA Splicing Factors

Word Cloud

Created with Highcharts 10.0.0splicingMYCpan-cancercanceralternativefactorsbreastregulatesnetworkco-expressedtumorsSF-modulecorrelatingacrosstumortypeseventsorganoidsMYC-regulatedorganoidsizeco-expressiondysregulated>50%cancersdirecttargetingclinicallyunsuccessfulTargetingdownstreameffectorpathwaysrepresentsattractivemRNAmechanisticlinksmachineryremainunderexploredidentifySF-modulesMYC-activeoneactivity33mammarycellmodelsactivationleadsco-upregulationmoduleSFschanges>4000co-overexpressioninducesincreasesinvasivenessknockdowndecreasesFinallyuncoverMYC-activitysignaturesurvivalfindingsprovideinsightmechanismsdevelopmenttherapeuticsMYC-drivenoncogenicCP:CancerRNASRproteinsanalysismodulesoncogenes

Similar Articles

Cited By