Mining and characterization of the PKS-NRPS hybrid for epicoccamide A: a mannosylated tetramate derivative from Epicoccum sp. CPCC 400996.

Tao Zhang, Guowei Cai, Xiaoting Rong, Jingwen Xu, Bingya Jiang, Hao Wang, Xinxin Li, Lu Wang, Ran Zhang, Wenni He, Liyan Yu
Author Information
  1. Tao Zhang: Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China. evergo218@163.com.
  2. Guowei Cai: Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
  3. Xiaoting Rong: Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
  4. Jingwen Xu: Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
  5. Bingya Jiang: Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
  6. Hao Wang: Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
  7. Xinxin Li: Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
  8. Lu Wang: Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
  9. Ran Zhang: Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
  10. Wenni He: Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China. wnner0047@126.com.
  11. Liyan Yu: Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China. yly@cpcc.ac.cn.

Abstract

BACKGROUND: Genomic analysis indicated that the genomes of ascomycetes might carry dozens of biosynthetic gene clusters (BGCs), yet many clusters have remained enigmatic. The ascomycete genus Epicoccum, belonging to the family Didymellaceae, is ubiquitous that colonizes different types of substrates and is associated with phyllosphere or decaying vegetation. Species of this genus are prolific producers of bioactive substances. The epicoccamides, as biosynthetically distinct mannosylated tetramate, were first isolated in 2003 from Epicoccum sp. In this study, using a combination of genome mining, chemical identification, genetic deletion, and bioinformatic analysis, we identified the required BGC epi responsible for epicoccamide A biosynthesis in Epicoccum sp. CPCC 400996.
RESULTS: The unconventional biosynthetic gene cluster epi was obtained from an endophyte Epicoccum sp. CPCC 400996 through AntiSMASH-based genome mining. The cluster epi includes six putative open reading frames (epiA-epiF) altogether, in which the epiA encodes a tetramate-forming polyketide synthase and nonribosomal peptide synthetases (PKS-NRPS hybrid). Sequence alignments and bioinformatic analysis to other metabolic pathways of fungal tetramates, we proposed that the gene cluster epi could be involved in generating epicoccamides. Genetic knockout of epiA completely abolished the biosynthesis of epicoccamide A (1), thereby establishing the correlation between the BGC epi and biosynthesis of epicoccamide A. Bioinformatic adenylation domain signature analysis of EpiA and other fungal PKS-NRPSs (NRPs) indicated that the EpiA is L-alanine incorporating tetramates megasynthase. Furthermore, based on the molecular structures of epicoccamide A and deduced gene functions of the cluster epi, a hypothetic metabolic pathway for biosynthesizing compound 1 was proposed. The corresponding tetramates releasing during epicoccamide A biosynthesis was catalyzed through Dieckmann-type cyclization, in which the reductive (R) domain residing in terminal module of EpiA accomplished the conversion. These results unveiled the underlying mechanism of epicoccamides biosynthesis and these findings might provide opportunities for derivatization of epicoccamides or generation of new chemical entities.
CONCLUSION: Genome mining and genetic inactivation experiments unveiled a previously uncharacterized PKS - NRPS hybrid-based BGC epi responsible for the generation of epicoccamide A (1) in endophyte Epicoccum sp. CPCC 400996. In addition, based on the gene cluster data, a hypothetical biosynthetic pathway of epicoccamide A was proposed.

Keywords

References

  1. Fungal Genet Biol. 2008 Dec;45(12):1608-15 [PMID: 18854220]
  2. Curr Opin Biotechnol. 2021 Jun;69:252-262 [PMID: 33647849]
  3. Chem Biol. 2009 Oct 30;16(10):1031-44 [PMID: 19875077]
  4. Chembiochem. 2007 Feb 12;8(3):289-97 [PMID: 17216664]
  5. Phytochemistry. 2020 Jun;174:112338 [PMID: 32179305]
  6. Mar Drugs. 2020 Mar 13;18(3): [PMID: 32183021]
  7. Fungal Genet Biol. 2015 Aug;81:73-81 [PMID: 26051491]
  8. Nat Commun. 2021 Jun 23;12(1):3864 [PMID: 34162873]
  9. Sci China Life Sci. 2017 Sep;60(9):958-967 [PMID: 28812298]
  10. Chembiochem. 2007 Sep 24;8(14):1736-43 [PMID: 17722120]
  11. Front Microbiol. 2019 Feb 26;10:294 [PMID: 30863377]
  12. Chembiochem. 2018 Mar 16;19(6):535-539 [PMID: 29314577]
  13. Biochem Biophys Res Commun. 2015 May 1;460(2):210-5 [PMID: 25770422]
  14. Org Lett. 2021 May 7;23(9):3274-3277 [PMID: 33881880]
  15. Chembiochem. 2013 Nov 4;14(16):2095-9 [PMID: 24106156]
  16. Chem Biol. 2006 Jun;13(6):575-85 [PMID: 16793515]
  17. J Am Chem Soc. 2011 Feb 2;133(4):643-5 [PMID: 21171605]
  18. Curr Top Med Chem. 2016;16(15):1727-39 [PMID: 26456464]
  19. BMC Bioinformatics. 2008 Sep 16;9:376 [PMID: 18793444]
  20. Biotechnol Adv. 2014 Nov 1;32(6):1180-204 [PMID: 24651031]
  21. Bioorg Med Chem. 2008 Apr 15;16(8):4203-21 [PMID: 18334299]
  22. Nat Prod Rep. 2021 Sep 23;38(9):1555-1566 [PMID: 33710214]
  23. Front Microbiol. 2020 Oct 07;11:562063 [PMID: 33117309]
  24. J Ind Microbiol Biotechnol. 2017 Feb;44(2):285-293 [PMID: 27885438]
  25. Chem Biol. 2008 Feb;15(2):175-88 [PMID: 18291322]
  26. Antimicrob Agents Chemother. 2006 Jun;50(6):2113-21 [PMID: 16723573]
  27. Mar Drugs. 2022 Jun 16;20(6): [PMID: 35736201]
  28. Fitoterapia. 2020 Oct;146:104698 [PMID: 32745508]
  29. Microbiol Spectr. 2016 Nov;4(6): [PMID: 27809954]
  30. Org Biomol Chem. 2003 Feb 7;1(3):507-10 [PMID: 12926253]
  31. J Am Chem Soc. 2018 Jun 6;140(22):6991-6997 [PMID: 29741874]
  32. Microb Pathog. 2017 Sep;110:214-224 [PMID: 28648623]
  33. Genome Res. 2010 Feb;20(2):265-72 [PMID: 20019144]
  34. Sci China Life Sci. 2013 Jul;56(7):628-37 [PMID: 23832252]
  35. Methods Enzymol. 2009;458:181-217 [PMID: 19374984]
  36. J Agric Food Chem. 2022 Oct 5;70(39):12430-12441 [PMID: 36134616]
  37. Nat Rev Microbiol. 2019 Mar;17(3):167-180 [PMID: 30531948]
  38. Org Lett. 2015 May 15;17(10):2295-7 [PMID: 25885659]
  39. Chem Commun (Camb). 2005 Jan 14;(2):186-8 [PMID: 15724180]
  40. Crit Rev Microbiol. 2018 Nov;44(6):759-778 [PMID: 30369284]
  41. Org Lett. 2015 Feb 6;17(3):628-31 [PMID: 25621700]
  42. Org Lett. 2022 Jan 28;24(3):804-808 [PMID: 35045257]
  43. Nat Prod Rep. 2021 Nov 17;38(11):2100-2129 [PMID: 34734626]
  44. Chem Biol. 2008 Jun;15(6):527-32 [PMID: 18559263]
  45. Org Lett. 2019 Mar 1;21(5):1287-1291 [PMID: 30735051]
  46. Nat Rev Genet. 2021 Sep;22(9):553-571 [PMID: 34083778]
  47. J Am Chem Soc. 2010 Oct 6;132(39):13604-7 [PMID: 20828130]
  48. Mar Drugs. 2020 Feb 15;18(2): [PMID: 32075282]
  49. Nat Prod Rep. 2010 Jan;27(1):11-22 [PMID: 20024091]
  50. ACS Chem Biol. 2013 Jul 19;8(7):1549-57 [PMID: 23614392]
  51. J Nat Prod. 2007 Sep;70(9):1522-5 [PMID: 17711348]
  52. ACS Chem Biol. 2022 Jun 17;17(6):1524-1533 [PMID: 35616995]
  53. mBio. 2018 Oct 2;9(5): [PMID: 30279281]
  54. Curr Opin Microbiol. 2017 Oct;39:136-142 [PMID: 29175703]
  55. Nucleic Acids Res. 2021 Jul 2;49(W1):W29-W35 [PMID: 33978755]
  56. FEMS Microbiol Lett. 2010 Oct;311(2):152-9 [PMID: 20738401]
  57. J Am Chem Soc. 2012 Oct 24;134(42):17342-5 [PMID: 23062149]
  58. J Am Chem Soc. 2017 Apr 19;139(15):5317-5320 [PMID: 28365998]

Grants

  1. 31872617/National Natural Science Foundation of China
  2. 32141003/National Natural Science Foundation of China
  3. 2021-I2M-1-055/CAMS Innovation Fund for Medical Sciences (CIFMS)
  4. 2019-I2M-1-005/CAMS Innovation Fund for Medical Sciences (CIFMS)
  5. 3332018097/Central Level, Scientific Research Institutes for Basic R & D Fund Business

MeSH Term

Polyketide Synthases
Monosaccharides
Ketones
Ascomycota

Chemicals

epicoccamide
Polyketide Synthases
Monosaccharides
Ketones

Word Cloud

Created with Highcharts 10.0.0epicoccamideEpicoccumepigenespbiosynthesisclusteranalysisepicoccamidesminingCPCC400996biosyntheticBGChybridtetramatesproposed1EpiAindicatedmightclustersgenusmannosylatedtetramategenomechemicalgeneticbioinformaticresponsibleendophyteepiAPKS-NRPSmetabolicfungaldomainbasedpathwayunveiledgenerationGenomeBACKGROUND:GenomicgenomesascomycetescarrydozensBGCsyetmanyremainedenigmaticascomycetebelongingfamilyDidymellaceaeubiquitouscolonizesdifferenttypessubstratesassociatedphyllospheredecayingvegetationSpeciesprolificproducersbioactivesubstancesbiosyntheticallydistinctfirstisolated2003studyusingcombinationidentificationdeletionidentifiedrequiredRESULTS:unconventionalobtainedAntiSMASH-basedincludessixputativeopenreadingframesepiA-epiFaltogetherencodestetramate-formingpolyketidesynthasenonribosomalpeptidesynthetasesSequencealignmentspathwaysinvolvedgeneratingGeneticknockoutcompletelyabolishedtherebyestablishingcorrelationBioinformaticadenylationsignaturePKS-NRPSsNRPsL-alanineincorporatingmegasynthaseFurthermoremolecularstructuresdeducedfunctionshypotheticbiosynthesizingcompoundcorrespondingreleasingcatalyzedDieckmann-typecyclizationreductiveRresidingterminalmoduleaccomplishedconversionresultsunderlyingmechanismfindingsprovideopportunitiesderivatizationnewentitiesCONCLUSION:inactivationexperimentspreviouslyuncharacterizedPKS - NRPShybrid-basedadditiondatahypotheticalMiningcharacterizationA:derivativeBiosynthesisEpicoccamidePKS−NRPSTetramates

Similar Articles

Cited By