Nitrogen, manganese, iron, and carbon resource acquisition are potential functions of the wild rice Oryza rufipogon core rhizomicrobiome.

Jingjing Chang, Lei Tian, Marcio F A Leite, Yu Sun, Shaohua Shi, Shangqi Xu, Jilin Wang, Hongping Chen, Dazhou Chen, Jianfeng Zhang, Chunjie Tian, Eiko E Kuramae
Author Information
  1. Jingjing Chang: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China.
  2. Lei Tian: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China.
  3. Marcio F A Leite: Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, 6708 PB, Wageningen, the Netherlands.
  4. Yu Sun: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China.
  5. Shaohua Shi: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China.
  6. Shangqi Xu: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China.
  7. Jilin Wang: Jiangxi Super-rice Research and Development Center, National Engineering Laboratory for Rice, Nanchang, China.
  8. Hongping Chen: Jiangxi Super-rice Research and Development Center, National Engineering Laboratory for Rice, Nanchang, China.
  9. Dazhou Chen: Jiangxi Super-rice Research and Development Center, National Engineering Laboratory for Rice, Nanchang, China.
  10. Jianfeng Zhang: College of Life Science, Jilin Agricultural University, Changchun, Jilin, China.
  11. Chunjie Tian: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China. tiancj@iga.ac.cn.
  12. Eiko E Kuramae: Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, 6708 PB, Wageningen, the Netherlands. e.kuramae@nioo.knaw.nl.

Abstract

BACKGROUND: The assembly of the rhizomicrobiome, i.e., the microbiome in the soil adhering to the root, is influenced by soil conditions. Here, we investigated the core rhizomicrobiome of a wild plant species transplanted to an identical soil type with small differences in chemical factors and the impact of these soil chemistry differences on the core microbiome after long-term cultivation. We sampled three natural reserve populations of wild rice (i.e., in situ) and three populations of transplanted in situ wild rice grown ex situ for more than 40 years to determine the core wild rice rhizomicrobiome.
RESULTS: Generalized joint attribute modeling (GJAM) identified a total of 44 amplicon sequence variants (ASVs) composing the core wild rice rhizomicrobiome, including 35 bacterial ASVs belonging to the phyla Actinobacteria, Chloroflexi, Firmicutes, and Nitrospirae and 9 fungal ASVs belonging to the phyla Ascomycota, Basidiomycota, and Rozellomycota. Nine core bacterial ASVs belonging to the genera Haliangium, Anaeromyxobacter, Bradyrhizobium, and Bacillus were more abundant in the rhizosphere of ex situ wild rice than in the rhizosphere of in situ wild rice. The main ecological functions of the core microbiome were nitrogen fixation, manganese oxidation, aerobic chemoheterotrophy, chemoheterotrophy, and iron respiration, suggesting roles of the core rhizomicrobiome in improving nutrient resource acquisition for rice growth. The function of the core rhizosphere bacterial community was significantly (p < 0.05) shaped by electrical conductivity, total nitrogen, and available phosphorus present in the soil adhering to the roots.
CONCLUSION: We discovered that nitrogen, manganese, iron, and carbon resource acquisition are potential functions of the core rhizomicrobiome of the wild rice Oryza rufipogon. Our findings suggest that further potential utilization of the core rhizomicrobiome should consider the effects of soil properties on the abundances of different genera. Video Abstract.

Keywords

References

  1. Sci Rep. 2019 Oct 30;9(1):15611 [PMID: 31666614]
  2. Sci Rep. 2017 Nov 7;7(1):14778 [PMID: 29116183]
  3. Annu Rev Microbiol. 2019 Sep 8;73:69-88 [PMID: 31091418]
  4. Front Microbiol. 2017 Nov 15;8:2224 [PMID: 29187837]
  5. Microbiome. 2020 Feb 14;8(1):20 [PMID: 32059747]
  6. Environ Microbiol. 2012 Jan;14(1):4-12 [PMID: 22004523]
  7. Microbiome. 2021 Apr 28;9(1):96 [PMID: 33910643]
  8. Front Microbiol. 2021 Feb 04;12:610823 [PMID: 33613482]
  9. Curr Microbiol. 2021 Apr;78(4):1069-1085 [PMID: 33611628]
  10. Plant J. 2006 Feb;45(3):335-46 [PMID: 16412081]
  11. Sci Total Environ. 2021 Jun 10;772:144825 [PMID: 33581524]
  12. Int J Environ Res Public Health. 2018 Mar 23;15(4): [PMID: 29570619]
  13. Environ Sci Pollut Res Int. 2022 Jul;29(33):50085-50095 [PMID: 35226273]
  14. Arch Microbiol. 2017 May;199(4):563-571 [PMID: 27990555]
  15. FEMS Microbiol Ecol. 2017 Aug 1;93(8): [PMID: 28830071]
  16. Bioinformatics. 2006 Jul 1;22(13):1658-9 [PMID: 16731699]
  17. ISME J. 2014 Aug;8(8):1577-87 [PMID: 24553468]
  18. Plant Physiol Biochem. 2016 Feb;99:39-48 [PMID: 26713550]
  19. ISME J. 2010 Feb;4(2):267-78 [PMID: 19776769]
  20. Science. 2017 Jun 16;356(6343):1175-1178 [PMID: 28596311]
  21. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  22. Nature. 2005 Jun 9;435(7043):824-7 [PMID: 15944706]
  23. Nat Plants. 2018 May;4(5):247-257 [PMID: 29725101]
  24. Sci Total Environ. 2022 Jan 10;803:150131 [PMID: 34788940]
  25. New Phytol. 2017 Apr;214(1):412-423 [PMID: 27879004]
  26. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  27. J Microbiol Methods. 2007 Sep;70(3):565-9 [PMID: 17683816]
  28. Environ Pollut. 2021 Mar 1;272:116009 [PMID: 33257150]
  29. Environ Microbiol. 2020 Aug;22(8):3429-3445 [PMID: 32510843]
  30. Curr Microbiol. 2020 Nov;77(11):3623-3632 [PMID: 32767065]
  31. Nat Commun. 2022 Jun 16;13(1):3228 [PMID: 35710629]
  32. Life (Basel). 2021 Aug 20;11(8): [PMID: 34440596]
  33. Water Res. 2021 Oct 15;205:117688 [PMID: 34597990]
  34. Trends Ecol Evol. 2020 May;35(5):426-439 [PMID: 32294424]
  35. Microbiome. 2022 Mar 1;10(1):37 [PMID: 35227326]
  36. Microb Ecol. 2015 May;69(4):855-66 [PMID: 25103911]
  37. FEMS Microbiol Ecol. 2022 Jun 23;98(6): [PMID: 35595468]
  38. Appl Environ Microbiol. 2020 Aug 3;86(16): [PMID: 32532868]
  39. FEMS Microbiol Ecol. 2020 Jun 1;96(6): [PMID: 32275297]
  40. Theor Appl Genet. 2015 Jul;128(7):1359-71 [PMID: 25862679]
  41. Microb Ecol. 2018 Jul;76(1):205-214 [PMID: 29147973]
  42. ISME J. 2021 Nov;15(11):3181-3194 [PMID: 33980999]
  43. Sci Rep. 2020 Feb 7;10(1):2084 [PMID: 32034269]
  44. Sci Total Environ. 2022 Oct 10;842:156706 [PMID: 35724776]
  45. Sci Rep. 2020 Jul 22;10(1):12234 [PMID: 32699344]
  46. Nat Biotechnol. 2019 Apr;37(4):367-369 [PMID: 30877282]
  47. Int J Mol Sci. 2019 Feb 12;20(3): [PMID: 30759832]
  48. Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E911-20 [PMID: 25605935]
  49. Mol Ecol. 2013 Nov;22(21):5271-7 [PMID: 24112409]
  50. Microorganisms. 2021 Jan 15;9(1): [PMID: 33467504]
  51. Microb Ecol. 2020 Jan;79(1):110-122 [PMID: 31250077]
  52. Nature. 2012 Aug 2;488(7409):86-90 [PMID: 22859206]

MeSH Term

Oryza
Nitrogen
Carbon
Manganese
Iron
Bacteria
Soil

Chemicals

Nitrogen
Carbon
Manganese
Iron
Soil

Word Cloud

Created with Highcharts 10.0.0corewildricerhizomicrobiomesitusoilmicrobiomeASVsbacterialbelongingrhizospherefunctionsnitrogenmanganeseironresourceacquisitionpotentialieadheringtransplanteddifferencesthreepopulationsextotalphylagenerachemoheterotrophycarbonOryzarufipogonNitrogenBACKGROUND:assemblyrootinfluencedconditionsinvestigatedplantspeciesidenticaltypesmallchemicalfactorsimpactchemistrylong-termcultivationsamplednaturalreservegrown40yearsdetermineRESULTS:GeneralizedjointattributemodelingGJAMidentified44ampliconsequencevariantscomposingincluding35ActinobacteriaChloroflexiFirmicutesNitrospirae9fungalAscomycotaBasidiomycotaRozellomycotaNineHaliangiumAnaeromyxobacterBradyrhizobiumBacillusabundantmainecologicalfixationoxidationaerobicrespirationsuggestingrolesimprovingnutrientgrowthfunctioncommunitysignificantlyp<005shapedelectricalconductivityavailablephosphoruspresentrootsCONCLUSION:discoveredfindingssuggestutilizationconsidereffectspropertiesabundancesdifferentVideoAbstractDongxiangExFree-livingNfixersuseefficiencyRhizosphere

Similar Articles

Cited By