Mariacristina Gagliardi, Matteo Agostini, Francesco Lunardelli, Alessio Miranda, Antonella Giuliana Luminare, Fabrizio Cervelli, Francesca Gambineri, Marco Cecchini
Enzyme detection in liquid samples is a complex laboratory procedure, based on assays that are generally time- and cost-consuming, and require specialized personnel. Surface acoustic wave sensors can be used for this application, overcoming the cited limitations. To give our contribution, in this work we present the bottom-up development of a surface acoustic wave biosensor to detect active α-glycosidase in aqueous solutions. Our device, optimized to work at an ultra-high frequency (around 740 MHz), is functionalized with a newly synthesized probe 7-mercapto-1-eptyl-D-maltoside, bringing one maltoside terminal moiety. The probe is designed ad hoc for this application and tested in-cuvette to analyze the enzymatic conversion kinetics at different times, temperatures and enzyme concentrations. Preliminary data are used to optimize the detection protocol with the SAW device. In around 60 min, the SAW device is able to detect the enzymatic conversion of the maltoside unit into glucose in the presence of the active enzyme. We obtained successful α-glycosidase detection in the concentration range 0.15-150 U/mL, with an increasing signal in the range up to 15 U/mL. We also checked the sensor performance in the presence of an enzyme inhibitor as a control test, with a signal decrease of 80% in the presence of the inhibitor. The results demonstrate the synergic effect of our SAW Lab-on-a-Chip and probe design as a valid alternative to conventional laboratory tests.
Biochemistry. 2005 Jul 12;44(27):9456-61
[PMID:
15996100]
Biosens Bioelectron. 2020 Sep 1;163:112164
[PMID:
32568688]
Adv Colloid Interface Sci. 2021 Aug;294:102431
[PMID:
34330074]
Bioelectrochem Bioenerg. 1999 May;48(2):477-80
[PMID:
10379571]
Langmuir. 2008 Apr 15;24(8):3880-7
[PMID:
18324851]
Chem Commun (Camb). 2013 Oct 28;49(84):9821-3
[PMID:
24030817]
Biosens Bioelectron. 1998 Oct 1;13(7-8):839-45
[PMID:
9828380]
Biosensors (Basel). 2021 Dec 30;12(1):
[PMID:
35049645]
Biosens Bioelectron. 2021 Jan 15;172:112774
[PMID:
33160234]
ACS Sens. 2016 Nov 23;1(11):1282-1285
[PMID:
30294676]
J Am Chem Soc. 2004 Nov 17;126(45):14752-7
[PMID:
15535699]
Sensors (Basel). 2020 Nov 19;20(22):
[PMID:
33228249]
Sensors (Basel). 2015 Apr 14;15(4):8605-14
[PMID:
25875186]
Sensors (Basel). 2019 Dec 06;19(24):
[PMID:
31817599]
Biosens Bioelectron. 2007 Apr 15;22(9-10):2145-50
[PMID:
17097870]
Anal Biochem. 2004 Jul 1;330(1):145-55
[PMID:
15183773]
Biosens Bioelectron. 2006 Jun 15;21(12):2255-62
[PMID:
16356708]
J Phys Chem B. 2022 Feb 3;126(4):802-812
[PMID:
35073079]
Org Biomol Chem. 2008 Feb 21;6(4):727-31
[PMID:
18264573]
J Phys Chem B. 2009 Nov 5;113(44):14761-8
[PMID:
19827780]
Sensors (Basel). 2022 Jan 21;22(3):
[PMID:
35161565]
Crit Rev Anal Chem. 2019;49(6):542-552
[PMID:
30739473]
Biosens Bioelectron. 2013 Nov 15;49:290-6
[PMID:
23774166]
Biosens Bioelectron. 2013 Mar 15;41:862-6
[PMID:
22964383]
J Sci Food Agric. 1974 Dec;25(12):1465-9
[PMID:
4373616]
Biosens Bioelectron. 2009 Jun 15;24(10):3120-5
[PMID:
19423329]
J Am Chem Soc. 2004 Mar 3;126(8):2264-5
[PMID:
14982404]
Langmuir. 2008 Oct 21;24(20):11592-9
[PMID:
18778090]
J Colloid Interface Sci. 2018 Sep 15;526:244-252
[PMID:
29738939]
Biosens Bioelectron. 2008 Apr 15;23(9):1397-403
[PMID:
18262781]
Sensors (Basel). 2021 Feb 05;21(4):
[PMID:
33562639]
Anal Biochem. 1995 Apr 10;226(2):207-11
[PMID:
7793619]
ChemMedChem. 2016 Aug 5;11(15):1626-37
[PMID:
27356908]
Chemistry. 2001 Aug 3;7(15):3305-12
[PMID:
11531116]