Application of Decision-Tree-Based Machine Learning Algorithms for Prediction of Antimicrobial Resistance.

Muhammad Yasir, Asad Mustafa Karim, Sumera Kausar Malik, Amal A Bajaffer, Esam I Azhar
Author Information
  1. Muhammad Yasir: Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia. ORCID
  2. Asad Mustafa Karim: Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea. ORCID
  3. Sumera Kausar Malik: Department of Bioscience and Biotechnology, The University of Suwon, Hwaseong 18323, Republic of Korea.
  4. Amal A Bajaffer: Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia. ORCID
  5. Esam I Azhar: Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia. ORCID

Abstract

Timely and efficacious antibiotic treatment depends on precise and quick in silico antimicrobial-resistance predictions. Limited treatment choices due to antimicrobial resistance (AMR) highlight the necessity to optimize the available diagnostics. AMR can be explicitly anticipated on the basis of genome sequence. In this study, we used transcriptomes of 410 multidrug-resistant isolates of . We trained 10 machine learning (ML) classifiers on the basis of data on gene expression (GEXP) information and generated predictive models for meropenem, ciprofloxacin, and ceftazidime drugs. Among all the used ML models, four models showed high F1-score, accuracy, precision, and specificity compared with the other models. However, RandomForestClassifier showed a moderate F1-score (0.6), precision (0.61), and specificity (0.625) for ciprofloxacin. In the case of ceftazidime, RidgeClassifier performed well and showed F1-score (0.652), precision (0.654), and specificity (0.652) values. For meropenem, KNeighborsClassifier exhibited moderate F1-score (0.629), precision (0.629), and specificity (0.629). Among these three antibiotics, GEXP data on meropenem and ceftazidime improved diagnostic performance. The findings will pave the way for the establishment of a resistance profiling tool that can predict AMR on the basis of transcriptomic markers.

Keywords

References

  1. Antimicrob Agents Chemother. 2001 Feb;45(2):480-4 [PMID: 11158744]
  2. Antimicrob Agents Chemother. 1998 Jan;42(1):65-71 [PMID: 9449262]
  3. Clin Microbiol Rev. 2012 Oct;25(4):661-81 [PMID: 23034325]
  4. Pathog Glob Health. 2015;109(7):309-18 [PMID: 26343252]
  5. Lancet Infect Dis. 2016 Jan;16(1):17-18 [PMID: 26738826]
  6. Antimicrob Agents Chemother. 2000 Mar;44(3):658-64 [PMID: 10681335]
  7. Saudi J Biol Sci. 2022 May;29(5):3687-3693 [PMID: 35844400]
  8. Clin Microbiol Rev. 2018 Jan 31;31(2): [PMID: 29386234]
  9. Antimicrob Agents Chemother. 2013 Mar;57(3):1361-8 [PMID: 23274661]
  10. EMBO Mol Med. 2020 Mar 6;12(3):e10264 [PMID: 32048461]
  11. Front Microbiol. 2019 Jul 10;10:1553 [PMID: 31354657]
  12. J Clin Microbiol. 2014 Jan;52(1):357-61 [PMID: 24153125]
  13. Mol Microbiol. 1997 Jan;23(2):345-54 [PMID: 9044268]
  14. Pathogens. 2022 Jun 12;11(6): [PMID: 35745533]
  15. Front Microbiol. 2019 Jul 30;10:1762 [PMID: 31417536]
  16. Nat Commun. 2015 Dec 21;6:10063 [PMID: 26686880]
  17. Clin Microbiol Rev. 2009 Oct;22(4):582-610 [PMID: 19822890]

Grants

  1. IFPRC-103-141-2020/Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia.

Word Cloud

Created with Highcharts 10.0.00modelsF1-scoreprecisionspecificityresistanceAMRbasismeropenemceftazidimeshowed629treatmentantimicrobialcanusedmachinelearningMLdataGEXPciprofloxacinAmongmoderate652Timelyefficaciousantibioticdependsprecisequicksilicoantimicrobial-resistancepredictionsLimitedchoicesduehighlightnecessityoptimizeavailablediagnosticsexplicitlyanticipatedgenomesequencestudytranscriptomes410multidrug-resistantisolatestrained10classifiersgeneexpressioninformationgeneratedpredictivedrugsfourhighaccuracycomparedHoweverRandomForestClassifier661625caseRidgeClassifierperformedwell654valuesKNeighborsClassifierexhibitedthreeantibioticsimproveddiagnosticperformancefindingswillpavewayestablishmentprofilingtoolpredicttranscriptomicmarkersApplicationDecision-Tree-BasedMachineLearningAlgorithmsPredictionAntimicrobialResistancePseudomonasaeruginosatranscriptomics

Similar Articles

Cited By