The Effect of Date Palm Genotypes on Rhizobacterial Community Structures under Saline Environments.

Aya Al-Busaidi, Bernard R Glick, Mahmoud W Yaish
Author Information
  1. Aya Al-Busaidi: Department of Biology, College of Sciences, Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman.
  2. Bernard R Glick: Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
  3. Mahmoud W Yaish: Department of Biology, College of Sciences, Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman. ORCID

Abstract

Some genotypes of date palms ( L.) are salt-tolerant; however, salinity significantly affects others. This study aimed to determine the root epiphytic bacterial contributions to the salt tolerance mechanism in the date palm and to verify if the salt-tolerant "Umsila" and the salt-susceptible "Zabad" cultivars have different bacterial communities. Therefore, the epiphytic bacterial community structures were investigated in both cultivars when grown under control and salinity conditions. The proximal soils of the roots were collected, the DNA was extracted, and a culture-independent approach using Illumina MiSeq™ sequence analysis was carried out to identify the changes in the bacterial community structures in the soil samples due to the changes in salinity and the genotypes of the plants based on 16S rRNA gene sequencing. While salt tolerance response differences were evident between the two cultivars, the 16S rRNA gene sequencing results revealed 771 operational taxonomic units (OTUs), including 62 that were differentially accumulated in response to salinity. The ordination analysis showed significant ( = 0.001) changes among the communities in response to salinity in both cultivars. However, the results showed that the two cultivars had distinct bacterial communities when grown under controlled conditions, whereas they had a more similar bacterial community structure when grown under salinity conditions. The plant genotype does not affect the epiphyte bacterial community structure under salinity, probably because salinity affects the plant-microbe interaction similarly in both cultivars. Also, the identified rhizospheric bacteria are not directly associated with the root's physiological processes in response to salinity.

Keywords

References

  1. Plant Physiol Biochem. 2016 Feb;99:39-48 [PMID: 26713550]
  2. Int J Syst Evol Microbiol. 2008 Jun;58(Pt 6):1346-9 [PMID: 18523176]
  3. Int J Syst Evol Microbiol. 2015 Jan;65(Pt 1):141-146 [PMID: 25301540]
  4. Biology (Basel). 2022 Mar 12;11(3): [PMID: 35336811]
  5. Int Microbiol. 2016 Sep;19(3):143-155 [PMID: 28494084]
  6. Mol Biol Evol. 2013 Dec;30(12):2725-9 [PMID: 24132122]
  7. FEMS Microbiol Lett. 2014 Oct;359(2):193-200 [PMID: 25131902]
  8. Int J Mol Sci. 2022 Feb 21;23(4): [PMID: 35216487]
  9. Physiol Plant. 2022 Oct 17;:e13800 [PMID: 36250979]
  10. Microorganisms. 2021 Jul 19;9(7): [PMID: 34361969]
  11. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  12. mSystems. 2019 Feb 12;4(1): [PMID: 30801023]
  13. FEMS Microbiol Lett. 2020 Aug 1;367(16): [PMID: 32766759]
  14. Front Plant Sci. 2017 Apr 24;8:611 [PMID: 28484479]
  15. Microb Ecol. 2013 Jul;66(1):40-8 [PMID: 23299347]
  16. Microb Ecol. 2022 Aug;84(2):483-495 [PMID: 34499191]
  17. Appl Environ Microbiol. 2006 Mar;72(3):1719-28 [PMID: 16517615]
  18. FEMS Microbiol Ecol. 2014 May;88(2):424-35 [PMID: 24597529]
  19. Syst Appl Microbiol. 2005 Mar;28(2):165-74 [PMID: 15830809]
  20. J Exp Bot. 2012 May;63(9):3415-28 [PMID: 22403432]
  21. Front Microbiol. 2019 May 22;10:1142 [PMID: 31178845]
  22. Trends Microbiol. 2020 Nov;28(11):877-888 [PMID: 32591108]
  23. BMC Microbiol. 2019 Sep 2;19(1):201 [PMID: 31477026]
  24. Sci Rep. 2017 Oct 17;7(1):13332 [PMID: 29042583]
  25. Appl Environ Microbiol. 2019 Mar 22;85(7): [PMID: 30709822]
  26. Nat Rev Microbiol. 2011 Jun;9(6):403-13 [PMID: 21572457]
  27. Int J Syst Evol Microbiol. 2011 Aug;61(Pt 8):1817-1822 [PMID: 20817840]
  28. Nat Methods. 2010 May;7(5):335-6 [PMID: 20383131]
  29. Front Plant Sci. 2019 Jul 03;10:862 [PMID: 31333701]
  30. Bioessays. 2001 Jul;23(7):657-61 [PMID: 11462219]
  31. Antonie Van Leeuwenhoek. 2015 Jun;107(6):1519-32 [PMID: 25860542]
  32. Environ Microbiol. 2003 Sep;5(9):746-53 [PMID: 12919410]
  33. mSystems. 2022 Feb 22;7(1):e0097321 [PMID: 35014873]
  34. PLoS One. 2014 Sep 04;9(9):e106662 [PMID: 25188357]

Word Cloud

Created with Highcharts 10.0.0salinitybacterialcultivarscommunityresponsedatecommunitiesgrownconditionschangesgenotypessalt-tolerantaffectsepiphyticsalttolerancepalmstructuresanalysis16SrRNAgenesequencingtworesultsshowedstructurepalmsLhoweversignificantlyothersstudyaimeddeterminerootcontributionsmechanismverify"Umsila"salt-susceptible"Zabad"differentThereforeinvestigatedcontrolproximalsoilsrootscollectedDNAextractedculture-independentapproachusingIlluminaMiSeq™sequencecarriedidentifysoilsamplesdueplantsbaseddifferencesevidentrevealed771operationaltaxonomicunitsOTUsincluding62differentiallyaccumulatedordinationsignificant=0001amongHoweverdistinctcontrolledwhereassimilarplantgenotypeaffectepiphyteprobablyplant-microbeinteractionsimilarlyAlsoidentifiedrhizosphericbacteriadirectlyassociatedroot'sphysiologicalprocessesEffectDatePalmGenotypesRhizobacterialCommunityStructuresSalineEnvironmentsPGPRUmsilaZabadabioticstress

Similar Articles

Cited By