Computational investigation of natural compounds as potential main protease (M) inhibitors for SARS-CoV-2 virus.

Chirag N Patel, Siddhi P Jani, Sivakumar Prasanth Kumar, Krunal M Modi, Yogesh Kumar
Author Information
  1. Chirag N Patel: Computer-Aided Drug Design Group, Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, 21702, USA; Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India. Electronic address: chiragpatel269@gmail.com.
  2. Siddhi P Jani: Institute of Science, Nirma University, Ahmedabad, 382481, Gujarat, India.
  3. Sivakumar Prasanth Kumar: Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
  4. Krunal M Modi: Department of Molecular Electrochemistry and Catalysis, J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 2155/3, 182 23 Prague 8, Czech Republic; Department of Humanities and Science, School of Engineering, Indrashil University, Mehsana, 382740, Gujarat, India. Electronic address: kmodi5033@gmail.com.
  5. Yogesh Kumar: Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany.

Abstract

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is significantly impacting human lives, overburdening the healthcare system and weakening global economies. Plant-derived natural compounds are being largely tested for their efficacy against COVID-19 targets to combat SARS-CoV-2 infection. The SARS-CoV-2 Main protease (M) is considered an appealing target because of its role in replication in host cells. We curated a set of 7809 natural compounds by combining the collections of five databases viz Dr Duke's Phytochemical and Ethnobotanical database, IMPPAT, PhytoHub, AromaDb and Zinc. We applied a rigorous computational approach to identify lead molecules from our curated compound set using docking, dynamic simulations, the free energy of binding and DFT calculations. Theaflavin and ginkgetin have emerged as better molecules with a similar inhibition profile in both SARS-CoV-2 and Omicron variants.

Keywords

References

  1. MMWR Morb Mortal Wkly Rep. 2021 Dec 17;70(50):1731-1734 [PMID: 34914670]
  2. Microb Pathog. 2021 May;154:104831 [PMID: 33727169]
  3. Proteins. 2011 Oct;79(10):2794-812 [PMID: 21905107]
  4. PLoS One. 2021 Jun 17;16(6):e0253489 [PMID: 34138966]
  5. Oral Dis. 2022 Apr;28 Suppl 1:858-866 [PMID: 32475006]
  6. Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5 [PMID: 14585926]
  7. Food Chem Toxicol. 2020 Nov;145:111642 [PMID: 32783998]
  8. J Biomol Struct Dyn. 2021 Oct;39(16):6306-6316 [PMID: 32698689]
  9. Molecules. 2021 Aug 08;26(16): [PMID: 34443390]
  10. Fitoterapia. 2021 Jul;152:104909 [PMID: 33894315]
  11. Science. 2020 Jun 19;368(6497):1331-1335 [PMID: 32321856]
  12. J Chem Phys. 2005 Oct 1;123(13):134101 [PMID: 16223269]
  13. Sci Total Environ. 2020 Aug 15;730:138996 [PMID: 32371230]
  14. Comput Biol Med. 2021 Feb;129:104137 [PMID: 33302163]
  15. Cells. 2021 Apr 06;10(4): [PMID: 33917481]
  16. Front Pharmacol. 2018 Oct 22;9:1038 [PMID: 30405403]
  17. Cell Res. 2022 May;32(5):498-500 [PMID: 35292745]
  18. J Biomol Struct Dyn. 2022 Oct;40(17):7744-7761 [PMID: 33749528]
  19. J Chem Inf Model. 2021 Jul 26;61(7):3495-3501 [PMID: 33939913]
  20. J Food Biochem. 2021 Jul 8;:e13851 [PMID: 34236082]
  21. Pharmaceuticals (Basel). 2022 Mar 20;15(3): [PMID: 35337174]
  22. Comput Struct Biotechnol J. 2022;20:1306-1344 [PMID: 35308802]
  23. Cell Res. 2022 Mar;32(3):322-324 [PMID: 35058606]
  24. Bioorg Med Chem Lett. 2022 Apr 15;62:128629 [PMID: 35182772]
  25. Sci Transl Med. 2022 Sep 28;14(664):eabq3059 [PMID: 35857629]
  26. Sci Rep. 2018 Mar 12;8(1):4329 [PMID: 29531263]
  27. Vet Q. 2022 Jun 7;42(1):119-124 [PMID: 35658858]
  28. Ann Neurol. 2021 May;89(5):856-857 [PMID: 33710649]
  29. Comput Biol Med. 2021 Sep;136:104683 [PMID: 34329860]
  30. J Am Chem Soc. 1988 Mar 1;110(6):1657-66 [PMID: 27557051]
  31. J Microbiol. 2022 Mar;60(3):347-354 [PMID: 35089586]
  32. J Biomol Struct Dyn. 2021 Jul;39(10):3449-3458 [PMID: 32397940]
  33. Proteins. 2004 Dec 1;57(4):678-83 [PMID: 15390263]
  34. Arch Virol. 2020 Sep;165(9):2095-2098 [PMID: 32556599]
  35. Expert Opin Drug Discov. 2015 May;10(5):449-61 [PMID: 25835573]
  36. Front Plant Sci. 2018 Aug 13;9:1081 [PMID: 30150996]
  37. J Comput Chem. 2010 Apr 15;31(5):1106-16 [PMID: 19824035]
  38. Molecules. 2022 Jun 13;27(12): [PMID: 35744929]
  39. Molecules. 2021 Jun 11;26(12): [PMID: 34208050]
  40. J Chem Inf Model. 2005 Jan-Feb;45(1):177-82 [PMID: 15667143]
  41. Proteins. 2002 May 15;47(3):393-402 [PMID: 11948792]
  42. Phys Chem Chem Phys. 2014 Aug 21;16(31):16719-29 [PMID: 24999761]
  43. J Biomol Struct Dyn. 2018 Nov;36(15):3938-3957 [PMID: 29281938]
  44. PLoS Pathog. 2020 May 14;16(5):e1008421 [PMID: 32407364]
  45. Drug Res (Stuttg). 2021 Oct;71(8):462-472 [PMID: 34517419]
  46. Sci Rep. 2021 Oct 13;11(1):20295 [PMID: 34645849]
  47. J Med Virol. 2022 May;94(5):1876-1885 [PMID: 35083761]
  48. Mol Divers. 2023 Apr;27(2):857-871 [PMID: 35639226]
  49. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  50. Sci Immunol. 2022 Aug 26;7(74):eabq5901 [PMID: 35653497]
  51. J Chem Inf Model. 2011 Jan 24;51(1):69-82 [PMID: 21117705]
  52. Ophthalmol Retina. 2021 Sep;5(9):850-854 [PMID: 33271345]
  53. Nature. 2020 Jun;582(7811):289-293 [PMID: 32272481]
  54. J Biomol Struct Dyn. 2021 Jul;39(11):3882-3891 [PMID: 32448055]
  55. Drug Dev Res. 2021 Feb;82(1):86-96 [PMID: 32770567]
  56. J Biomol Struct Dyn. 2021 Jul;39(10):3760-3770 [PMID: 32448034]
  57. J Comput Chem. 2015 May 15;36(13):996-1007 [PMID: 25824339]
  58. Sci Rep. 2017 Mar 16;7:44651 [PMID: 28300210]
  59. ScientificWorldJournal. 2011;11:2241-6 [PMID: 22125471]
  60. J Mol Liq. 2022 May 1;353:118775 [PMID: 35194277]
  61. Chem Rev. 2003 May;103(5):1793-873 [PMID: 12744694]
  62. Acc Chem Res. 2000 Dec;33(12):889-97 [PMID: 11123888]
  63. Biophys J. 2010 Apr 7;98(7):1327-36 [PMID: 20371333]
  64. Methods Mol Biol. 2018;1685:43-67 [PMID: 29086303]
  65. Bol Med Hosp Infant Mex. 2020;77(2):47-53 [PMID: 32226003]
  66. J Infect Public Health. 2020 Sep;13(9):1210-1223 [PMID: 32561274]

MeSH Term

Humans
SARS-CoV-2
Peptide Hydrolases
Pandemics
COVID-19 Drug Treatment

Chemicals

Peptide Hydrolases

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2naturalcompoundsMcoronavirusCOVID-19MainproteasecuratedsetmoleculesfreeenergyDFTOmicrondisease2019pandemiccausedsevereacuterespiratorysyndrome2significantlyimpactinghumanlivesoverburdeninghealthcaresystemweakeningglobaleconomiesPlant-derivedlargelytestedefficacytargetscombatinfectionconsideredappealingtargetrolereplicationhostcells7809combiningcollectionsfivedatabasesvizDrDuke'sPhytochemicalEthnobotanicaldatabaseIMPPATPhytoHubAromaDbZincappliedrigorouscomputationalapproachidentifyleadcompoundusingdockingdynamicsimulationsbindingcalculationsTheaflavinginkgetinemergedbettersimilarinhibitionprofilevariantsComputationalinvestigationpotentialmaininhibitorsvirusBindingcalculationDynamicssimulationproteasespro

Similar Articles

Cited By (7)