Green synthesis of zinc oxide nanoparticles using leaf extract: characterization, antimicrobial, antioxidant and photocatalytic activity.

Farjana Rahman, Md Abdul Majed Patwary, Md Abu Bakar Siddique, Muhammad Shahriar Bashar, Md Aminul Haque, Beauty Akter, Rimi Rashid, Md Anamul Haque, A K M Royhan Uddin
Author Information
  1. Farjana Rahman: Department of Chemistry, Comilla University, Cumilla 3506, Bangladesh.
  2. Md Abdul Majed Patwary: Department of Chemistry, Comilla University, Cumilla 3506, Bangladesh. ORCID
  3. Md Abu Bakar Siddique: Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh.
  4. Muhammad Shahriar Bashar: Institute of Fuel Research and Development (IFRD), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh.
  5. Md Aminul Haque: Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh.
  6. Beauty Akter: Department of Chemistry, Comilla University, Cumilla 3506, Bangladesh.
  7. Rimi Rashid: Materials Science Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh.
  8. Md Anamul Haque: Department of Pharmacy, Comilla University, Cumilla 3506, Bangladesh.
  9. A K M Royhan Uddin: Department of Chemistry, Comilla University, Cumilla 3506, Bangladesh.

Abstract

Zinc oxide nanoparticles (ZnO NPs) have been successfully prepared using leaf extract and their antimicrobial, antioxidant and photocatalytic activity investigated. The structural, compositional and morphological properties of the NPs were recorded and studied systematically to confirm the synthesis. The aqueous suspension of NPs showed an ultraviolet-visible (UV-Vis) absorption maxima of 370 nm, indicating primarily its formation. X-ray diffraction analysis identified the NPs with a hexagonal wurtzite structure and an average particle size of 16.6 nm. Fourier transform infrared analysis identified some biomolecules and functional groups in the leaf extract as responsible for the encapsulation and stabilization of ZnO NPs. Energy-dispersive X-ray analysis showed the desired elemental compositions in the material. A flower-shaped morphology of ZnO NPs was observed by scanning electron microscopy, with a grain size of around 15 nm. The optical properties of the NPs were studied by UV-Vis spectroscopy, and the band gap was calculated as 3.37 eV. The prepared ZnO NPs have demonstrated antimicrobial activity against , with a zone of inhibition of 14 and 10 mm, respectively. The photocatalytic behaviour of ZnO NPs showed absorbance degradation at around 640 nm and it discoloured methylene blue dye after 1 h, with a degradation maximum of 84.29%. Thus, the prepared ZnO NPs could potentially be used in antibiotic development and pharmaceutical industries, and as photocatalysts.

Keywords

Associated Data

Dryad | 10.5061/dryad.tht76hf27

References

  1. Sci Rep. 2021 Jun 15;11(1):12547 [PMID: 34131155]
  2. ACS Omega. 2020 May 26;5(22):13123-13129 [PMID: 32548498]
  3. R Soc Open Sci. 2022 Nov 23;9(11):220858 [PMID: 36425517]
  4. Appl Biochem Biotechnol. 2016 Aug;179(8):1309-24 [PMID: 27052209]
  5. J Pharm Anal. 2016 Apr;6(2):71-79 [PMID: 29403965]
  6. Biomolecules. 2020 Feb 19;10(2): [PMID: 32092985]
  7. Microb Pathog. 2019 Jun;131:239-245 [PMID: 31002961]
  8. Biomed Pharmacother. 2016 Dec;84:1213-1222 [PMID: 27788479]
  9. RSC Adv. 2019 May 16;9(27):15357-15369 [PMID: 35514831]
  10. Pharmaceutics. 2021 Oct 11;13(10): [PMID: 34683954]
  11. Biochim Biophys Acta Rev Cancer. 2019 Jan;1871(1):99-108 [PMID: 30528646]
  12. R Soc Open Sci. 2019 Nov 6;6(11):191378 [PMID: 31827868]
  13. Bioinorg Chem Appl. 2020 Nov 20;2020:8817110 [PMID: 33273900]
  14. RSC Adv. 2019 May 10;9(26):14638-14648 [PMID: 35516315]
  15. Nanomedicine (Lond). 2014 Jan;9(1):89-104 [PMID: 23427863]
  16. J Photochem Photobiol B. 2016 Aug;161:441-9 [PMID: 27318600]
  17. Spectrochim Acta A Mol Biomol Spectrosc. 2016 Jan 5;152:404-16 [PMID: 26241826]
  18. RSC Adv. 2018 Nov 5;8(65):37176-37183 [PMID: 35557822]
  19. Molecules. 2021 May 19;26(10): [PMID: 34069558]
  20. Colloids Surf B Biointerfaces. 2013 Nov 1;111:556-60 [PMID: 23891844]
  21. Molecules. 2022 Mar 02;27(5): [PMID: 35268756]
  22. Mater Sci Eng C Mater Biol Appl. 2019 Oct;103:109756 [PMID: 31349415]
  23. Front Chem. 2017 Oct 12;5:78 [PMID: 29075626]
  24. RSC Adv. 2019 Jan 21;9(5):2673-2702 [PMID: 35520490]
  25. J Photochem Photobiol B. 2017 Feb;167:136-149 [PMID: 28064074]
  26. ScientificWorldJournal. 2014 Jan 15;2014:829894 [PMID: 24558336]
  27. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Jun 5;144:17-22 [PMID: 25748589]
  28. R Soc Open Sci. 2018 Feb 14;5(2):171788 [PMID: 29515887]
  29. Microb Pathog. 2017 Mar;104:268-277 [PMID: 28115262]
  30. Enzyme Microb Technol. 2018 Oct;117:91-95 [PMID: 30037558]
  31. Molecules. 2020 Oct 02;25(19): [PMID: 33023149]
  32. BMC Res Notes. 2015 Oct 30;8:621 [PMID: 26518275]
  33. Biomed Pharmacother. 2016 Dec;84:810-820 [PMID: 27723572]
  34. Mater Sci Eng C Mater Biol Appl. 2016 Apr 1;61:728-35 [PMID: 26838903]
  35. ACS Omega. 2021 Jan 21;6(4):2665-2674 [PMID: 33553884]
  36. R Soc Open Sci. 2018 Jan 31;5(1):171113 [PMID: 29410826]
  37. Angew Chem Int Ed Engl. 2015 Jan 7;54(2):536-40 [PMID: 25366670]
  38. Int J Food Sci. 2014;2014:310852 [PMID: 26904626]
  39. ACS Appl Mater Interfaces. 2019 Jul 17;11(28):24933-24944 [PMID: 31173687]
  40. ACS Omega. 2021 Mar 30;6(14):9709-9722 [PMID: 33869951]
  41. Spectrochim Acta A Mol Biomol Spectrosc. 2015 May 15;143:304-8 [PMID: 25756552]
  42. J Clin Microbiol. 1999 Nov;37(11):3751-5 [PMID: 10523593]
  43. Mater Sci Eng C Mater Biol Appl. 2019 Nov;104:109968 [PMID: 31500003]
  44. Saudi J Biol Sci. 2016 Jul;23(4):517-23 [PMID: 27298586]
  45. Int J Nanomedicine. 2018 Dec 20;14:87-100 [PMID: 30587987]
  46. Front Chem. 2020 Jul 21;8:580 [PMID: 32793554]

Word Cloud

Created with Highcharts 10.0.0NPsZnOantimicrobialnmpreparedleafantioxidantphotocatalyticactivityshowedanalysisoxidenanoparticlesusingextractpropertiesstudiedsynthesisUV-VisX-rayidentifiedsizearounddegradationZincsuccessfullyinvestigatedstructuralcompositionalmorphologicalrecordedsystematicallyconfirmaqueoussuspensionultraviolet-visibleabsorptionmaxima370indicatingprimarilyformationdiffractionhexagonalwurtzitestructureaverageparticle166FouriertransforminfraredbiomoleculesfunctionalgroupsresponsibleencapsulationstabilizationEnergy-dispersivedesiredelementalcompositionsmaterialflower-shapedmorphologyobservedscanningelectronmicroscopygrain15opticalspectroscopybandgapcalculated337eVdemonstratedzoneinhibition1410mmrespectivelybehaviourabsorbance640discolouredmethylenebluedye1hmaximum8429%ThuspotentiallyusedantibioticdevelopmentpharmaceuticalindustriesphotocatalystsGreenzincextract:characterizationCocosnuciferagreenapproachphotocatalyst

Similar Articles

Cited By