Satellites quantify the spatial extent of cyanobacterial blooms across the United States at multiple scales.

Blake A Schaeffer, Erin Urquhart, Megan Coffer, Wilson Salls, Richard P Stumpf, Keith A Loftin, P Jeremy Werdell
Author Information
  1. Blake A Schaeffer: Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Durham, NC 27709, United States.
  2. Erin Urquhart: Science Systems and Applications, Inc., Ocean Ecology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, United States.
  3. Megan Coffer: Oak Ridge Institute for Science and Education (ORISE), U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Durham, NC 27709, United States.
  4. Wilson Salls: Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Durham, NC 27709, United States.
  5. Richard P Stumpf: National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, 1305 East-West Highway Code N/SCI1, Silver Spring, MD 20910, United States.
  6. Keith A Loftin: U.S. Geological Survey, Organic Geochemistry Research Laboratory, Kansas Water Science Center, 1217 Biltmore Drive, Lawrence, KS 66049, United States.
  7. P Jeremy Werdell: Ocean Ecology Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, United States.

Abstract

Previous studies indicate that cyanobacterial harmful algal bloom (cyanoHAB) frequency, extent, and magnitude have increased globally over the past few decades. However, little quantitative capability is available to assess these metrics of cyanoHABs across broad geographic scales and at regular intervals. Here, the spatial extent was quantified from a cyanobacteria algorithm applied to two European Space Agency satellite platforms-the MEdium Resolution Imaging Spectrometer (MERIS) onboard Envisat and the Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3. cyanoHAB spatial extent was defined for each geographic area as the percentage of valid satellite pixels that exhibited cyanobacteria above the detection limit of the satellite sensor. This study quantified cyanoHAB spatial extent for over 2,000 large lakes and reservoirs across the contiguous United States (CONUS) during two time periods: 2008-2011 via MERIS and 2017-2020 via OLCI when cloud-, ice-, and snow-free imagery was available. Approximately 56% of resolvable lakes were glaciated, 13% were headwater, isolated, or terminal lakes, and the rest were primarily drainage lakes. Results were summarized at national-, regional-, state-, and lake-scales, where regions were defined as nine climate regions which represent climatically consistent states. As measured by satellite, changes in national cyanoHAB extent did have a strong increase of 6.9% from 2017 to 2020 (|Kendall's (��)| = 0.56; () = 2.87 years), but had negligible change (|| = 0.03) from 2008 to 2011. Two of the nine regions had moderate (0.3 ��� || < 0.5) increases in spatial extent from 2017 to 2020, and eight of nine regions had negligible (|| < 0.2) change from 2008 to 2011. Twelve states had a strong or moderate increase from 2017 to 2020 (|| ��� 0.3), while only one state had a moderate increase and two states had a moderate decrease from 2008 to 2011. A decrease, or no change, in cyanoHAB spatial extent did not indicate a lack of issues related to cyanoHABs. Sensitivity results of randomly omitted daily CONUS scenes confirm that even with reduced data availability during a short four-year temporal assessment, the direction and strength of the changes in spatial extent remained consistent. We present the first set of national maps of lake cyanoHAB spatial extent across CONUS and demonstrate an approach for quantifying past and future changes at multiple spatial scales. Results presented here provide water quality managers information regarding current cyanoHAB spatial extent and quantify rates of change.

Keywords

References

  1. Environ Microbiol Rep. 2009 Feb;1(1):27-37 [PMID: 23765717]
  2. Environ Sci Technol. 2009 May 15;43(10):3522-8 [PMID: 19544849]
  3. Harmful Algae. 2016 Jun;56:77-90 [PMID: 28073498]
  4. Commun Earth Environ. 2021;2: [PMID: 37359131]
  5. Water Resour Res. 2021 Oct;57(10):e2020WR028946 [PMID: 35860362]
  6. Harmful Algae. 2017 Jul;67:144-152 [PMID: 28755717]
  7. Environ Monit Assess. 2020 Dec 2;192(12):808 [PMID: 33263783]
  8. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6448-52 [PMID: 23576718]
  9. PLoS One. 2012;7(8):e42444 [PMID: 22870327]
  10. Sci Rep. 2019 Dec 4;9(1):18310 [PMID: 31797884]
  11. J Toxicol Environ Health B Crit Rev. 2000 Oct-Dec;3(4):323-47 [PMID: 11055209]
  12. Bull Environ Contam Toxicol. 2018 Nov;101(5):611-616 [PMID: 30229275]
  13. Environ Monit Assess. 2018 Oct 18;190(11):636 [PMID: 30338411]
  14. Turk J Emerg Med. 2018 Aug 07;18(3):91-93 [PMID: 30191186]
  15. Ecol Indic. 2020 Apr 1;111:105976 [PMID: 34326705]
  16. Environ Manage. 2014 Dec;54(6):1249-66 [PMID: 25223620]
  17. Data Brief. 2019 Nov 16;28:104826 [PMID: 31871980]
  18. Ecol Lett. 2015 Apr;18(4):375-84 [PMID: 25728551]
  19. Environ Monit Assess. 2006 May;116(1-3):543-62 [PMID: 16779611]
  20. Remote Sens Environ. 2017 Dec 15;203:139-151 [PMID: 29276312]
  21. Sci Total Environ. 2021 Jun 20;774:145462 [PMID: 33609824]
  22. Environ Monit Assess. 2011 Oct;181(1-4):317-34 [PMID: 21243424]
  23. Sci Total Environ. 2011 Apr 15;409(10):1739-45 [PMID: 21345482]
  24. Ecol Indic. 2017 Sep;80:84-95 [PMID: 30245589]
  25. Chemosphere. 2011 Nov;85(9):1415-22 [PMID: 21925702]
  26. Nature. 2019 Oct;574(7780):667-670 [PMID: 31610543]
  27. Geohealth. 2020 Aug 25;4(9):e2020GH000254 [PMID: 32864541]
  28. Front Environ Sci. 2020 Nov 2;8:581091 [PMID: 33365316]
  29. Mar Pollut Bull. 2014 Oct 15;87(1-2):311-322 [PMID: 25148755]
  30. Environ Model Softw. 2018;109:93-103 [PMID: 31595145]
  31. Water Res. 2012 Apr 1;46(5):1349-63 [PMID: 21893330]
  32. ISME J. 2011 Apr;5(4):580-9 [PMID: 21085197]
  33. Toxins (Basel). 2015 May 12;7(5):1649-63 [PMID: 25985390]
  34. Biol Rev Camb Philos Soc. 2017 Feb;92(1):135-149 [PMID: 26467655]
  35. Water Sci Technol. 2020 Mar;81(6):1099-1113 [PMID: 32597398]
  36. Science. 2008 Apr 4;320(5872):57-8 [PMID: 18388279]
  37. Ecol Indic. 2021 Sep 1;128:1-107822 [PMID: 35558093]
  38. Philos Trans R Soc Lond B Biol Sci. 2010 Oct 12;365(1555):3215-26 [PMID: 20819814]
  39. Water Res. 2021 Aug 1;201:117377 [PMID: 34218089]
  40. Gigascience. 2015 Jul 01;4:28 [PMID: 26140212]
  41. Remote Sens Environ. 2021 Dec 1;266:1-14 [PMID: 36424983]
  42. Harmful Algae. 2022 Jun;115:102191 [PMID: 35623685]
  43. Proc Biol Sci. 2002 Feb 7;269(1488):289-94 [PMID: 11839198]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0extentspatialcyanoHAB0acrosssatellitelakesregionschange||moderatescalestwo2CONUSninestateschangesincrease20172020=20082011indicatecyanobacterialalgalpastavailablecyanoHABsgeographicquantifiedcyanobacteriaMERISonboardOLCIdefinedUnitedStatesviaResultsconsistentnationalstrongnegligible3���<decreasemultiplequalityquantifybloomsPreviousstudiesharmfulbloomfrequencymagnitudeincreasedgloballydecadesHoweverlittlequantitativecapabilityassessmetricsbroadregularintervalsalgorithmappliedEuropeanSpaceAgencyplatforms-theMEdiumResolutionImagingSpectrometerEnvisatOceanLandColourInstrumentSentinel-3CyanoHABareapercentagevalidpixelsexhibiteddetectionlimitsensorstudy000largereservoirscontiguoustimeperiods:2008-20112017-2020cloud-ice-snow-freeimageryApproximately56%resolvableglaciated13%headwaterisolatedterminalrestprimarilydrainagesummarizednational-regional-state-lake-scalesclimaterepresentclimaticallymeasured69%|Kendall's��|5687years03Two5increaseseightTwelveonestatelackissuesrelatedSensitivityresultsrandomlyomitteddailyscenesconfirmevenreduceddataavailabilityshortfour-yeartemporalassessmentdirectionstrengthremainedpresentfirstsetmapslakedemonstrateapproachquantifyingfuturepresentedprovidewatermanagersinformationregardingcurrentratesSatellitesCyanobacteriaHarmfulLakesSatelliteremotesensingSpatialWater

Similar Articles

Cited By (8)