Genetically engineered crops for sustainably enhanced food production systems.

Mughair Abdul Aziz, Faical Brini, Hatem Rouached, Khaled Masmoudi
Author Information
  1. Mughair Abdul Aziz: Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu-Dhabi, United Arab Emirates.
  2. Faical Brini: Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.
  3. Hatem Rouached: Michigan State University, Plant and Soil Science Building, East Lansing, MI, United States.
  4. Khaled Masmoudi: Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu-Dhabi, United Arab Emirates.

Abstract

Genetic modification of crops has substantially focused on improving traits for desirable outcomes. It has resulted in the development of crops with enhanced yields, quality, and tolerance to biotic and abiotic stresses. With the advent of introducing favorable traits into crops, biotechnology has created a path for the involvement of genetically modified (GM) crops into sustainable food production systems. Although these plants heralded a new era of crop production, their widespread adoption faces diverse challenges due to concerns about the environment, human health, and moral issues. Mitigating these concerns with scientific investigations is vital. Hence, the purpose of the present review is to discuss the deployment of GM crops and their effects on sustainable food production systems. It provides a comprehensive overview of the cultivation of GM crops and the issues preventing their widespread adoption, with appropriate strategies to overcome them. This review also presents recent tools for genome editing, with a special focus on the CRISPR/Cas9 platform. An outline of the role of crops developed through CRSIPR/Cas9 in achieving sustainable development goals (SDGs) by 2030 is discussed in detail. Some perspectives on the approval of GM crops are also laid out for the new age of sustainability. The advancement in molecular tools through plant genome editing addresses many of the GM crop issues and facilitates their development without incorporating transgenic modifications. It will allow for a higher acceptance rate of GM crops in sustainable agriculture with rapid approval for commercialization. The current genetic modification of crops forecasts to increase productivity and prosperity in sustainable agricultural practices. The right use of GM crops has the potential to offer more benefit than harm, with its ability to alleviate food crises around the world.

Keywords

References

  1. Sci Rep. 2017 Aug 1;7(1):7057 [PMID: 28765632]
  2. Front Plant Sci. 2016 Apr 12;7:475 [PMID: 27148303]
  3. Nat Plants. 2017 Apr 10;3:17043 [PMID: 28394310]
  4. Front Plant Sci. 2020 Jun 12;11:575 [PMID: 32595655]
  5. PLoS One. 2020 Dec 3;15(12):e0243376 [PMID: 33270810]
  6. Plant Physiol. 2017 Jun;174(2):935-942 [PMID: 28584067]
  7. BMC Int Health Hum Rights. 2009 Aug 22;9:18 [PMID: 19698118]
  8. Science. 2018 Jun 8;360(6393):1130-1132 [PMID: 29880691]
  9. J Genet Eng Biotechnol. 2021 Aug 21;19(1):125 [PMID: 34420096]
  10. Front Bioeng Biotechnol. 2020 Jun 09;8:556 [PMID: 32582674]
  11. Front Cell Dev Biol. 2022 Apr 04;10:834646 [PMID: 35445018]
  12. GM Crops Food. 2016 Jan 2;7(1):38-77 [PMID: 27116697]
  13. Plant Signal Behav. 2020 Dec 1;15(12):1816321 [PMID: 32936726]
  14. Global Health. 2020 Jan 20;16(1):11 [PMID: 31959213]
  15. Rice (N Y). 2020 Mar 16;13(1):20 [PMID: 32180062]
  16. PLoS One. 2021 Apr 30;16(4):e0250995 [PMID: 33930083]
  17. Plant Biotechnol J. 2020 Nov;18(11):2164-2166 [PMID: 32339389]
  18. Adv Nutr. 2015 Nov 13;6(6):842-51 [PMID: 26567205]
  19. Mo Med. 2014 Nov-Dec;111(6):492-507 [PMID: 25665234]
  20. GM Crops Food. 2017 Jan 2;8(1):13-34 [PMID: 28278120]
  21. Plant Biotechnol J. 2020 Mar;18(3):644-654 [PMID: 31373135]
  22. Front Plant Sci. 2016 Mar 30;7:377 [PMID: 27066031]
  23. Front Plant Sci. 2018 Mar 02;9:268 [PMID: 29552023]
  24. Sci Rep. 2017 Oct 31;7(1):14438 [PMID: 29089547]
  25. Front Sustain Food Syst. 2021 Feb 22;5:644559 [PMID: 34212131]
  26. Acad Pediatr. 2021 Mar;21(2):205-210 [PMID: 32653691]
  27. Front Plant Sci. 2022 Nov 08;13:1027828 [PMID: 36426158]
  28. Mol Plant. 2017 Jul 5;10(7):1011-1013 [PMID: 28315752]
  29. Plant Physiol. 1995 Apr;107(4):1041-7 [PMID: 7770515]
  30. Cell Res. 2016 Nov;26(11):1242-1254 [PMID: 27767093]
  31. Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):E7559-E7567 [PMID: 30037991]
  32. GM Crops Food. 2022 Dec 31;13(1):65-85 [PMID: 35400312]
  33. Sci Rep. 2017 Mar 28;7(1):482 [PMID: 28352080]
  34. Front Plant Sci. 2017 Oct 30;8:1868 [PMID: 29163593]
  35. Plant Biotechnol J. 2021 Jul;19(7):1291-1293 [PMID: 33934462]
  36. J Food Sci Technol. 2013 Dec;50(6):1035-46 [PMID: 24426015]
  37. Plant Cell Rep. 2021 Jun;40(6):999-1011 [PMID: 33074435]
  38. Mol Biotechnol. 2020 Feb;62(2):79-90 [PMID: 31758488]
  39. Int J Food Sci. 2022 May 12;2022:3489785 [PMID: 35600239]
  40. Nat Plants. 2018 Sep;4(9):651-654 [PMID: 30104651]
  41. Curr Opin Microbiol. 2017 Jun;37:67-78 [PMID: 28605718]
  42. Cureus. 2020 Mar 18;12(3):e7306 [PMID: 32313747]
  43. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3240-4 [PMID: 4594039]
  44. Mol Plant. 2017 Aug 7;10(8):1137-1140 [PMID: 28533193]
  45. J Agric Food Chem. 2017 Oct 4;65(39):8674-8682 [PMID: 28873302]
  46. Annu Rev Plant Biol. 2019 Apr 29;70:667-697 [PMID: 30835493]
  47. Global Health. 2022 Mar 12;18(1):31 [PMID: 35279165]
  48. Food Chem. 2020 May 01;311:125892 [PMID: 31791724]
  49. Food Sci Nutr. 2021 Jul 27;9(9):5324-5331 [PMID: 34532037]
  50. BMC Plant Biol. 2019 Aug 14;19(1):354 [PMID: 31412779]
  51. Plant Biotechnol J. 2016 Nov;14(11):2134-2146 [PMID: 27107174]
  52. PLoS One. 2016 Apr 26;11(4):e0154027 [PMID: 27116122]
  53. Nat Biotechnol. 2012 Mar 07;30(3):231-9 [PMID: 22398616]
  54. Nat Commun. 2017 Nov 3;8(1):1310 [PMID: 29101356]
  55. Front Genome Ed. 2022 Jan 31;3:819687 [PMID: 35174353]
  56. J Integr Plant Biol. 2014 Apr;56(4):343-9 [PMID: 24373158]
  57. Pest Manag Sci. 2021 Apr;77(4):2106-2113 [PMID: 33350567]
  58. Plant Biotechnol J. 2018 Apr;16(4):902-910 [PMID: 28921815]
  59. Front Plant Sci. 2021 Mar 22;12:605937 [PMID: 33828569]
  60. FEMS Microbiol Lett. 2022 Feb 22;369(1): [PMID: 35137045]
  61. GM Crops Food. 2020 Oct 1;11(4):242-261 [PMID: 32706314]
  62. Methods Mol Biol. 2020;2124:125-139 [PMID: 32277451]
  63. Plant Biotechnol J. 2020 Jun;18(6):1384-1395 [PMID: 31769589]
  64. Front Plant Sci. 2018 Apr 26;9:559 [PMID: 29755497]
  65. Biotechnol Law Rep. 2014 Oct 1;33(5):181-192 [PMID: 25374436]
  66. PLoS One. 2015 Feb 23;10(2):e0117340 [PMID: 25706412]
  67. BMC Plant Biol. 2021 Mar 16;21(1):137 [PMID: 33726681]
  68. Plants (Basel). 2020 Jul 16;9(7): [PMID: 32708602]
  69. Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):3006-3011 [PMID: 30723147]
  70. Front Bioeng Biotechnol. 2019 Feb 20;7:24 [PMID: 30842944]
  71. Plant Biotechnol J. 2018 Feb;16(2):415-427 [PMID: 28640983]
  72. PLoS Biol. 2017 Sep 18;15(9):e2003243 [PMID: 28922352]
  73. Front Plant Sci. 2022 Feb 24;13:850441 [PMID: 35283882]
  74. Bioengineered. 2022 Apr;13(4):9508-9520 [PMID: 35389819]
  75. aBIOTECH. 2021 Apr 15;2(4):375-385 [PMID: 36304421]
  76. Microb Ecol Health Dis. 2014 Sep 25;25: [PMID: 25317116]
  77. N Engl J Med. 1996 Mar 14;334(11):688-92 [PMID: 8594427]
  78. Front Plant Sci. 2019 Jan 14;9:1957 [PMID: 30693009]
  79. Nat Plants. 2022 Mar;8(3):245-256 [PMID: 35301443]
  80. J Genet Genomics. 2017 Mar 20;44(3):175-178 [PMID: 28291639]
  81. Plant Biotechnol J. 2021 May;19(5):937-951 [PMID: 33236499]
  82. Plant Biotechnol J. 2020 Jan;18(1):298-309 [PMID: 31240772]
  83. Front Plant Sci. 2021 Nov 26;12:779598 [PMID: 34899806]
  84. Plant Biotechnol J. 2018 Oct;16(10):1710-1722 [PMID: 29479779]
  85. Sci Rep. 2021 Feb 24;11(1):4487 [PMID: 33627728]
  86. Plant Cell. 2017 Jun;29(6):1196-1217 [PMID: 28522548]
  87. Plant Physiol Biochem. 2018 Oct;131:63-69 [PMID: 29753601]
  88. Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):12052-7 [PMID: 20551223]
  89. Nat Plants. 2018 Jun;4(6):338-344 [PMID: 29735983]
  90. Heliyon. 2022 May 18;8(5):e09497 [PMID: 35620622]
  91. J Vet Res. 2018 Dec 31;62(4):555-561 [PMID: 30729216]
  92. Saudi J Biol Sci. 2022 Apr;29(4):1928-1935 [PMID: 35531207]
  93. PLoS One. 2014 Nov 03;9(11):e111629 [PMID: 25365303]
  94. Plant Biotechnol J. 2015 Aug;13(6):791-800 [PMID: 25599829]
  95. Front Plant Sci. 2019 Dec 11;10:1592 [PMID: 31921242]
  96. Front Genome Ed. 2022 May 18;4:898950 [PMID: 35663796]
  97. Front Plant Sci. 2018 Jul 17;9:985 [PMID: 30065734]
  98. Plant J. 2019 Oct;100(2):251-264 [PMID: 31219637]
  99. Plants (Basel). 2022 Apr 27;11(9): [PMID: 35567185]
  100. Nat Biotechnol. 2013 Aug;31(8):691-3 [PMID: 23929340]
  101. Appetite. 2011 Oct;57(2):401-13 [PMID: 21704665]
  102. Plant J. 2017 Oct;92(1):43-56 [PMID: 28670755]
  103. Nat Biotechnol. 1996 Jul;14(7):862-6 [PMID: 9631011]
  104. Genes Nutr. 2013 May;8(3):255-70 [PMID: 23076994]
  105. EMBO J. 2020 May 18;39(10):e103256 [PMID: 32134151]
  106. Plant Biotechnol J. 2018 Nov;16(11):1918-1927 [PMID: 29604159]
  107. aBIOTECH. 2019 Dec 3;1(1):88-96 [PMID: 36305007]
  108. EMBO Rep. 2006 Aug;7(8):750-3 [PMID: 16880817]
  109. Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):6058-6063 [PMID: 29784797]
  110. Trends Biotechnol. 2013 Jun;31(6):375-83 [PMID: 23601269]
  111. Nat Commun. 2019 Mar 8;10(1):1133 [PMID: 30850604]
  112. Mol Plant Pathol. 2016 Sep;17(7):1140-53 [PMID: 26808139]
  113. PLoS One. 2019 Oct 30;14(10):e0223910 [PMID: 31665171]
  114. Front Plant Sci. 2021 Oct 01;12:757152 [PMID: 34675957]
  115. Plant Physiol Biochem. 2018 Oct;131:70-77 [PMID: 29735370]
  116. Plant Biotechnol J. 2021 Aug;19(8):1602-1613 [PMID: 33638281]
  117. EMBO Rep. 2022 May 4;23(5):e54529 [PMID: 35441479]
  118. 3 Biotech. 2017 Jul;7(3):219 [PMID: 28674844]
  119. Front Sociol. 2022 Apr 12;7:793165 [PMID: 35495572]
  120. Front Plant Sci. 2016 Apr 06;7:380 [PMID: 27579028]
  121. Sci Rep. 2020 Jun 19;10(1):9975 [PMID: 32561771]
  122. Plant Mol Biol. 1983 Jan;2(1):5-14 [PMID: 24318098]
  123. Plant Cell Physiol. 2018 Nov 1;59(11):2239-2254 [PMID: 30107607]
  124. Glob Food Sec. 2020 Sep;26:100440 [PMID: 33014703]
  125. ACS Synth Biol. 2021 Dec 17;10(12):3264-3277 [PMID: 34851109]
  126. Anal Bioanal Chem. 2008 Oct;392(3):327-31 [PMID: 18709361]
  127. Plant Biotechnol J. 2020 Nov;18(11):2241-2250 [PMID: 32191373]
  128. J Genet Genomics. 2017 Sep 20;44(9):465-468 [PMID: 28412227]
  129. GM Crops Food. 2017 Oct 2;8(4):195-208 [PMID: 29235937]
  130. Plant Biotechnol J. 2013 May;11(4):395-407 [PMID: 23421562]
  131. Sci Total Environ. 2022 Jul 15;830:154534 [PMID: 35304140]
  132. Viruses. 2015 Jul 30;7(8):4254-81 [PMID: 26264020]
  133. Front Plant Sci. 2021 Feb 24;12:630396 [PMID: 33719302]
  134. Plants (Basel). 2022 Feb 23;11(5): [PMID: 35270072]
  135. Nat Biotechnol. 1999 Nov;17(11):1054 [PMID: 10545899]
  136. PLoS Pathog. 2011 Aug;7(8):e1002130 [PMID: 21901088]
  137. Plant Physiol. 2020 Aug;183(4):1453-1471 [PMID: 32457089]
  138. Plant Biotechnol J. 2017 May;15(5):648-657 [PMID: 27862889]
  139. Sci Rep. 2016 Nov 22;6:37395 [PMID: 27874087]
  140. Nat Biotechnol. 2018 Jan 10;36(1):6-7 [PMID: 29319694]
  141. An Acad Bras Cienc. 2011 Jun;83(2):719-30 [PMID: 21670890]
  142. Environ Health. 2022 Jan 8;21(1):6 [PMID: 34998398]
  143. Nat Biotechnol. 2016 Jun 9;34(6):582 [PMID: 27281401]
  144. Front Plant Sci. 2017 Mar 07;8:298 [PMID: 28326091]
  145. EFSA J. 2022 Jan 25;20(1):e07044 [PMID: 35106091]
  146. Plant Biotechnol J. 2020 Apr;18(4):887-888 [PMID: 31544299]
  147. Sci Rep. 2021 Nov 9;11(1):21941 [PMID: 34753955]
  148. Plant Mol Biol. 2018 Jul;97(4-5):371-383 [PMID: 29959585]
  149. J Agric Food Chem. 2019 Jul 17;67(28):7986-7994 [PMID: 31282158]
  150. Planta. 2020 Mar 31;251(4):91 [PMID: 32236850]
  151. J Sci Food Agric. 2021 Oct;101(13):5457-5468 [PMID: 33709409]
  152. Sustain Sci. 2018;13(5):1469-1482 [PMID: 30220919]
  153. Genes Nutr. 2007 Oct;2(1):67-70 [PMID: 18850144]
  154. Crit Rev Biotechnol. 2016;36(3):434-46 [PMID: 25566797]
  155. Science. 2006 Jun 2;312(5778):1318-9 [PMID: 16741100]
  156. Plant J. 2018 May;94(3):513-524 [PMID: 29446503]
  157. Sci Rep. 2018 Feb 15;8(1):3113 [PMID: 29449686]
  158. Mol Biol Rep. 2022 Sep;49(9):8977-8985 [PMID: 35429317]
  159. Trends Biotechnol. 2021 Mar;39(3):221-224 [PMID: 32988631]
  160. J Integr Plant Biol. 2022 Mar;64(3):756-770 [PMID: 35014191]
  161. Mol Plant Microbe Interact. 2018 Mar;31(3):363-373 [PMID: 29068239]
  162. Front Genome Ed. 2022 May 12;4:876697 [PMID: 35647578]
  163. Plant Biotechnol J. 2019 Dec;17(12):2259-2271 [PMID: 31033104]
  164. Nat Plants. 2018 Aug;4(8):530-533 [PMID: 29988153]
  165. Int J Genomics. 2022 Apr 15;2022:5547231 [PMID: 35465040]
  166. GM Crops Food. 2018;9(2):59-89 [PMID: 29889608]
  167. GM Crops Food. 2022 Dec 31;13(1):86-96 [PMID: 35506348]
  168. GM Crops. 2010 May-Jun;1(3):143-56 [PMID: 21844669]
  169. PLoS One. 2015 Aug 18;10(8):e0136064 [PMID: 26284791]
  170. Front Bioeng Biotechnol. 2018 Nov 27;6:181 [PMID: 30538985]
  171. J Genet Genomics. 2016 Jun 20;43(6):415-9 [PMID: 27317309]
  172. J Genet Genomics. 2016 Aug 20;43(8):529-32 [PMID: 27543262]
  173. Plants (Basel). 2021 Apr 11;10(4): [PMID: 33920391]
  174. Biochem Cell Biol. 2017 Apr;95(2):187-201 [PMID: 28177771]
  175. Sci Rep. 2017 Sep 6;7(1):10624 [PMID: 28878216]
  176. Nat Commun. 2016 Aug 25;7:12617 [PMID: 27558837]
  177. Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3570-5 [PMID: 25733849]
  178. Nature. 2019 Jan;565(7737):91-95 [PMID: 30542157]
  179. Nat Biotechnol. 2014 Sep;32(9):947-51 [PMID: 25038773]
  180. Sci Rep. 2021 Nov 8;11(1):21811 [PMID: 34750469]
  181. J Integr Plant Biol. 2018 May;60(5):369-375 [PMID: 29210506]
  182. J Biosci. 2020;45: [PMID: 33051408]
  183. Curr Oncol. 2013 Apr;20(2):e59-61 [PMID: 23559886]
  184. Nat Biotechnol. 2019 Mar;37(3):283-286 [PMID: 30610223]
  185. Evol Appl. 2019 Feb 04;12(7):1402-1416 [PMID: 31417623]
  186. Mol Breed. 2022 Apr 8;42(4):22 [PMID: 37309462]
  187. GM Crops Food. 2022 Dec 31;13(1):38-49 [PMID: 35318886]
  188. BMJ Glob Health. 2020 Aug;5(8): [PMID: 32847825]
  189. Nature. 2016 Apr 21;532(7599):293 [PMID: 27111611]
  190. Plant J. 2018 Jun;94(5):857-866 [PMID: 29570880]
  191. Avicenna J Med Biotechnol. 2011 Jul;3(3):109-17 [PMID: 23408723]
  192. Sci Total Environ. 2022 Feb 1;806(Pt 3):150718 [PMID: 34606855]
  193. GM Crops Food. 2015;6(2):103-33 [PMID: 25760405]
  194. Front Genome Ed. 2022 Mar 17;4:863193 [PMID: 35373188]
  195. J Integr Plant Biol. 2017 Sep;59(9):669-679 [PMID: 28636095]
  196. Plant J. 2015 May;82(4):632-43 [PMID: 25824104]

Word Cloud

Created with Highcharts 10.0.0cropsGMsustainablefoodproductiondevelopmentsystemsissuesgenomeeditingmodificationtraitsenhancednewcropwidespreadadoptionconcernsreviewalsotoolsapprovalagricultureGeneticsubstantiallyfocusedimprovingdesirableoutcomesresultedyieldsqualitytolerancebioticabioticstressesadventintroducingfavorablebiotechnologycreatedpathinvolvementgeneticallymodifiedAlthoughplantsheraldederafacesdiversechallengesdueenvironmenthumanhealthmoralMitigatingscientificinvestigationsvitalHencepurposepresentdiscussdeploymenteffectsprovidescomprehensiveoverviewcultivationpreventingappropriatestrategiesovercomepresentsrecentspecialfocusCRISPR/Cas9platformoutlineroledevelopedCRSIPR/Cas9achievinggoalsSDGs2030discusseddetailperspectiveslaidagesustainabilityadvancementmolecularplantaddressesmanyfacilitateswithoutincorporatingtransgenicmodificationswillallowhigheracceptanceraterapidcommercializationcurrentgeneticforecastsincreaseproductivityprosperityagriculturalpracticesrightusepotentialofferbenefitharmabilityalleviatecrisesaroundworldGeneticallyengineeredsustainablyenvironmentalconstraints

Similar Articles

Cited By