Bacteriophage-Mediated Cancer Gene Therapy.

Gleb Petrov, Maya Dymova, Vladimir Richter
Author Information
  1. Gleb Petrov: The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia. ORCID
  2. Maya Dymova: The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia. ORCID
  3. Vladimir Richter: The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.

Abstract

Bacteriophages have long been considered only as infectious agents that affect bacterial hosts. However, recent studies provide compelling evidence that these viruses are able to successfully interact with eukaryotic cells at the levels of the binding, entry and expression of their own genes. Currently, bacteriophages are widely used in various areas of biotechnology and medicine, but the most intriguing of them is cancer therapy. There are increasing studies confirming the efficacy and safety of using phage-based vectors as a systemic delivery vehicle of therapeutic genes and drugs in cancer therapy. Engineered bacteriophages, as well as eukaryotic viruses, demonstrate a much greater efficiency of transgene delivery and expression in cancer cells compared to non-viral gene transfer methods. At the same time, phage-based vectors, in contrast to eukaryotic viruses-based vectors, have no natural tropism to mammalian cells and, as a result, provide more selective delivery of therapeutic cargos to target cells. Moreover, numerous data indicate the presence of more complex molecular mechanisms of interaction between bacteriophages and eukaryotic cells, the further study of which is necessary both for the development of gene therapy methods and for understanding the cancer nature. In this review, we summarize the key results of research into aspects of phage-eukaryotic cell interaction and, in particular, the use of phage-based vectors for highly selective and effective systemic cancer gene therapy.

Keywords

References

  1. BioDrugs. 2021 May;35(3):255-280 [PMID: 33881767]
  2. EMBO Rep. 2019 Jun;20(6): [PMID: 30952693]
  3. Nat Rev Genet. 2003 Jun;4(6):471-7 [PMID: 12776216]
  4. Viruses. 2018 Jun 07;10(6): [PMID: 29880747]
  5. Subcell Biochem. 2018;88:261-279 [PMID: 29900501]
  6. Mol Ther Nucleic Acids. 2014 Aug 12;3:e185 [PMID: 25118171]
  7. Technol Cancer Res Treat. 2005 Aug;4(4):315-30 [PMID: 16029053]
  8. Integr Biol (Camb). 2016 Apr 18;8(4):465-74 [PMID: 26906932]
  9. Sci Adv. 2019 Aug 21;5(8):eaax0064 [PMID: 31457098]
  10. Genes (Basel). 2020 Mar 10;11(3): [PMID: 32164255]
  11. PLoS One. 2013;8(2):e57128 [PMID: 23451160]
  12. Gastroenterology. 2006 Nov;131(5):1370 [PMID: 17067600]
  13. Biochem Biophys Res Commun. 2017 Mar 11;484(3):605-611 [PMID: 28153726]
  14. J Transl Med. 2018 Aug 31;16(1):242 [PMID: 30170620]
  15. J Appl Microbiol. 2007 May;102(5):1337-49 [PMID: 17448169]
  16. Nat Immunol. 2013 Jul;14(7):654-9 [PMID: 23778792]
  17. Nat Struct Biol. 2003 Sep;10(9):688-93 [PMID: 12923574]
  18. Subcell Biochem. 2018;88:305-328 [PMID: 29900503]
  19. Nat Commun. 2017 Dec 4;8(1):1915 [PMID: 29203765]
  20. Viruses. 2019 Jun 18;11(6): [PMID: 31216787]
  21. Sci Rep. 2021 Jan 14;11(1):1467 [PMID: 33446856]
  22. Cell Host Microbe. 2019 Feb 13;25(2):285-299.e8 [PMID: 30763538]
  23. FEMS Microbiol Rev. 2013 Jul;37(4):554-71 [PMID: 23043507]
  24. Mol Ther. 2001 Apr;3(4):476-84 [PMID: 11319907]
  25. EMBO Mol Med. 2022 Aug 8;14(8):e15418 [PMID: 35758207]
  26. FASEB J. 2021 May;35(5):e21487 [PMID: 33811705]
  27. Virology. 2009 Feb 5;384(1):77-87 [PMID: 19064273]
  28. Annu Rev Biochem. 2010;79:803-33 [PMID: 20196649]
  29. Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18571-18577 [PMID: 31375630]
  30. Nature. 1971 Oct 8;233(5319):398-400 [PMID: 4940436]
  31. mBio. 2017 Nov 21;8(6): [PMID: 29162715]
  32. Hum Gene Ther. 1998 Nov 1;9(16):2393-9 [PMID: 9829538]
  33. Mol Cancer Ther. 2009 Aug;8(8):2383-91 [PMID: 19671758]
  34. Virol J. 2012 Jan 10;9:9 [PMID: 22234269]
  35. Cancer Gene Ther. 2020 May;27(5):301-310 [PMID: 31130731]
  36. Clin Exp Med. 2009 Jun;9(2):93-100 [PMID: 19184327]
  37. Viruses. 2021 Sep 02;13(9): [PMID: 34578333]
  38. PLoS One. 2009;4(3):e4972 [PMID: 19330034]
  39. Curr Opin Cell Biol. 2011 Apr;23(2):150-6 [PMID: 20970977]
  40. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  41. Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2466-71 [PMID: 26884209]
  42. Virology. 1972 Mar;47(3):638-43 [PMID: 4551993]
  43. Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):25097-25105 [PMID: 31767752]
  44. Curr Gene Ther. 2005 Aug;5(4):411-27 [PMID: 16101515]
  45. Adv Exp Med Biol. 2012;726:93-114 [PMID: 22297511]
  46. Biotechnol J. 2016 Jun;11(6):732-45 [PMID: 27061133]
  47. Discov Med. 2019 Jan;27(146):45-55 [PMID: 30721651]
  48. Front Microbiol. 2020 Sep 24;11:491001 [PMID: 33072000]
  49. FASEB J. 1999 Apr;13(6):727-34 [PMID: 10094933]
  50. J Biomed Sci. 2016 Sep 29;23(1):66 [PMID: 27680328]
  51. Small. 2013 Jan 28;9(2):215-21 [PMID: 23047655]
  52. Oncotarget. 2016 Apr 26;7(17):23988-4004 [PMID: 26992211]
  53. Br J Pharmacol. 2009 May;157(2):153-65 [PMID: 18776913]
  54. Adv Genet. 2010;69:65-82 [PMID: 20807602]
  55. Med Immunol. 2003 Feb 14;2(1):2 [PMID: 12625836]
  56. J Clin Med. 2020 May 16;9(5): [PMID: 32429407]
  57. Oncotarget. 2016 Aug 9;7(32):52135-52149 [PMID: 27437775]
  58. Cancers (Basel). 2022 Aug 22;14(16): [PMID: 36011047]
  59. Nat Rev Genet. 2007 Aug;8(8):573-87 [PMID: 17607305]
  60. Trends Microbiol. 2021 Jun;29(6):528-541 [PMID: 33243546]
  61. Mol Cancer Ther. 2012 Dec;11(12):2566-77 [PMID: 23053496]
  62. Pharmaceuticals (Basel). 2021 Jun 30;14(7): [PMID: 34208847]
  63. Cell. 2006 Apr 21;125(2):385-98 [PMID: 16630824]
  64. Acta Virol. 2004;48(4):241-8 [PMID: 15745047]
  65. Curr Opin Virol. 2011 Oct;1(4):298-303 [PMID: 22034588]
  66. Viruses. 2018 Apr 25;10(5): [PMID: 29693561]
  67. Front Microbiol. 2015 May 13;6:467 [PMID: 26029198]
  68. Viruses. 2015 Jan 19;7(1):268-84 [PMID: 25606974]
  69. J Biol Chem. 2012 Oct 19;287(43):35849-59 [PMID: 22915587]
  70. Heliyon. 2017 Sep 26;3(9):e00407 [PMID: 28971150]
  71. Virology. 2014 Nov;468-470:322-329 [PMID: 25232661]
  72. EMBO Mol Med. 2019 Apr;11(4): [PMID: 30808679]
  73. J Nanobiotechnology. 2017 Apr 24;15(1):32 [PMID: 28438164]
  74. Science. 1985 Jun 14;228(4705):1315-7 [PMID: 4001944]
  75. Science. 2019 Mar 29;363(6434): [PMID: 30923196]
  76. Adv Healthc Mater. 2015 Feb 18;4(3):413-9 [PMID: 25308797]
  77. Biotechnol Adv. 2010 Nov-Dec;28(6):849-58 [PMID: 20659548]
  78. Curr Mol Med. 2006 Feb;6(1):45-54 [PMID: 16472112]
  79. Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4471-6 [PMID: 18337507]
  80. J Clin Diagn Res. 2015 Jan;9(1):GE01-6 [PMID: 25738007]
  81. iScience. 2021 Mar 09;24(4):102287 [PMID: 33855278]
  82. Int J Mol Sci. 2021 Aug 19;22(16): [PMID: 34445641]
  83. Curr Med Chem. 2017 Nov 24;24(36):3987-4001 [PMID: 28412903]
  84. J Gene Med. 2018 May;20(5):e3015 [PMID: 29575374]
  85. Biochem Soc Trans. 2019 Feb 28;47(1):449-460 [PMID: 30783013]
  86. Exp Biol Med (Maywood). 2021 Dec;246(23):2463-2472 [PMID: 34644206]
  87. J Control Release. 2016 Oct 28;240:287-301 [PMID: 26796040]
  88. Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6852-7 [PMID: 20351260]
  89. Mol Oncol. 2013 Feb;7(1):55-66 [PMID: 22951279]
  90. EMBO Mol Med. 2013 Nov;5(11):1642-61 [PMID: 24106209]
  91. Arch Virol. 2019 Jan;164(1):69-82 [PMID: 30259141]
  92. Adv Exp Med Biol. 2017;1053:1-20 [PMID: 29549632]
  93. Adv Drug Deliv Rev. 2019 May;145:40-56 [PMID: 30594492]
  94. Curr Gene Ther. 2017;17(2):120-126 [PMID: 28494733]
  95. FEMS Microbiol Rev. 2014 Sep;38(5):916-31 [PMID: 24617569]
  96. PLoS One. 2017 Feb 16;12(2):e0171746 [PMID: 28207819]
  97. Virol J. 2018 Mar 20;15(1):49 [PMID: 29558962]
  98. J Nanobiotechnology. 2015 Oct 09;13:66 [PMID: 26452461]
  99. Hum Gene Ther. 1995 Nov;6(11):1467-76 [PMID: 8573619]
  100. Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18482-7 [PMID: 23091024]
  101. Mol Cancer. 2015 Jun 03;14:110 [PMID: 26037383]
  102. Science. 2002 Jun 28;296(5577):2404-7 [PMID: 12089446]
  103. Bacteriophage. 2012 Apr 1;2(2):105-283 [PMID: 23050221]
  104. Cancer. 2009 Jan 1;115(1):128-39 [PMID: 19090007]
  105. Expert Opin Drug Deliv. 2014 Oct;11(10):1561-74 [PMID: 24955860]
  106. In Vitro. 1972 Sep-Oct;8(2):91-3 [PMID: 4567658]
  107. Adv Sci (Weinh). 2022 Feb;9(4):e2103645 [PMID: 34914854]
  108. Eur J Cancer. 2017 Sep;83:258-265 [PMID: 28756138]

Grants

  1. 121030200173-6/Russian State funded budget project of ICBFM SB RAS

MeSH Term

Animals
Bacteriophages
Gene Transfer Techniques
Genetic Therapy
Pharmaceutical Preparations
Genes, Neoplasm
Mammals
Neoplasms

Chemicals

Pharmaceutical Preparations

Word Cloud

Created with Highcharts 10.0.0cancercellstherapygeneeukaryoticbacteriophagesvectorsdeliveryphage-basedstudiesprovidevirusesexpressiongenessystemictherapeuticmethodsselectiveinteractionBacteriophageslongconsideredinfectiousagentsaffectbacterialhostsHoweverrecentcompellingevidenceablesuccessfullyinteractlevelsbindingentryCurrentlywidelyusedvariousareasbiotechnologymedicineintriguingincreasingconfirmingefficacysafetyusingvehicledrugsEngineeredwelldemonstratemuchgreaterefficiencytransgenecomparednon-viraltransfertimecontrastviruses-basednaturaltropismmammalianresultcargostargetMoreovernumerousdataindicatepresencecomplexmolecularmechanismsstudynecessarydevelopmentunderstandingnaturereviewsummarizekeyresultsresearchaspectsphage-eukaryoticcellparticularusehighlyeffectiveBacteriophage-MediatedCancerGeneTherapy

Similar Articles

Cited By