A subtractive proteomics approach for the identification of immunodominant vaccine candidate proteins.

Mustafa Burak Acar, Şerife Ayaz-Güner, Hüseyin Güner, Gökçen Dinç, Ayşegül Ulu Kılıç, Mehmet Doğanay, Servet Özcan
Author Information
  1. Mustafa Burak Acar: Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey.
  2. Şerife Ayaz-Güner: Department of Molecular Biology and Genetics, Faculty of Life and Natural Science, Abdullah Gül University, Kayseri, Turkey.
  3. Hüseyin Güner: Department of Molecular Biology and Genetics, Faculty of Life and Natural Science, Abdullah Gül University, Kayseri, Turkey.
  4. Gökçen Dinç: Genome and Stem Cell Center (GENKÖK), Erciyes University, Kayseri, Turkey.
  5. Ayşegül Ulu Kılıç: Department of Infectious Disease and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
  6. Mehmet Doğanay: Department of Infectious Diseases, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey.
  7. Servet Özcan: Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey.

Abstract

Background: is one of the most life-threatening multidrug-resistant pathogens worldwide. Currently, 50%-70% of clinical isolates of are extensively drug-resistant, and available antibiotic options against infections are limited. There is still a need to discover specific bacterial antigenic proteins that could be effective vaccine candidates in human infection. With the growth of research in recent years, several candidate molecules have been identified for vaccine development. So far, no public health authorities have approved vaccines against .
Methods: This study aimed to identify immunodominant vaccine candidate proteins that can be immunoprecipitated specifically with patients' IgGs, relying on the hypothesis that the infected person's IgGs can capture immunodominant bacterial proteins. Herein, the outer-membrane and secreted proteins of sensitive and drug-resistant were captured using IgGs obtained from patient and healthy control sera and identified by Liquid Chromatography- Tandem Mass Spectrometry (LC-MS/MS) analysis.
Results: Using the subtractive proteomic approach, we determined 34 unique proteins captured only in drug-resistant strain patient sera. After extensively evaluating the predicted epitope regions, solubility, transverse membrane characteristics, and structural properties, we selected several notable vaccine candidates.
Conclusion: We identified vaccine candidate proteins that triggered a response of the human immune system against the antibiotic-resistant . Precipitation of bacterial proteins patient immunoglobulins was a novel approach to identifying the proteins that could trigger a response in the patient immune system.

Keywords

References

  1. Front Microbiol. 2012 Apr 23;3:148 [PMID: 22536199]
  2. Int J Mol Sci. 2017 Feb 21;18(2): [PMID: 28230771]
  3. PLoS One. 2012;7(7):e40155 [PMID: 22808107]
  4. Microbes Environ. 2011;26(2):101-12 [PMID: 21502736]
  5. Int J Mol Sci. 2019 Jul 13;20(14): [PMID: 31337077]
  6. Front Cell Infect Microbiol. 2017 May 09;7:143 [PMID: 28536672]
  7. Future Microbiol. 2009 Apr;4(3):273-8 [PMID: 19327114]
  8. Mol Biol Rep. 2019 Oct;46(5):5397-5408 [PMID: 31342294]
  9. ACS Omega. 2020 Mar 11;5(11):5713-5720 [PMID: 32226849]
  10. Virulence. 2012 May 1;3(3):243-50 [PMID: 22546906]
  11. Crit Rev Immunol. 2010;30(1):79-93 [PMID: 20370622]
  12. J Microbiol. 2008 Dec;46(6):720-7 [PMID: 19107403]
  13. Indian J Med Res. 2011 Jun;133:681-4 [PMID: 21727671]
  14. FEMS Microbiol Lett. 2009 Dec;301(2):224-31 [PMID: 19878322]
  15. PLoS One. 2013 Oct 08;8(10):e77631 [PMID: 24116234]
  16. Bioinformatics. 2002;18 Suppl 1:S46-53 [PMID: 12169530]
  17. Bioinformatics. 2016 May 15;32(10):1571-3 [PMID: 26794316]
  18. J Proteome Res. 2012 Dec 7;11(12):5678-94 [PMID: 22966805]
  19. PLoS One. 2012;7(1):e29446 [PMID: 22253723]
  20. Immunome Res. 2006 Apr 24;2:2 [PMID: 16635264]
  21. Pathogens. 2020 Dec 19;9(12): [PMID: 33352688]
  22. Appl Microbiol Biotechnol. 2014 May;98(10):4331-45 [PMID: 24652063]
  23. Front Immunol. 2022 Aug 15;13:933445 [PMID: 36045685]
  24. J Chem Inf Model. 2016 Dec 27;56(12):2292-2297 [PMID: 28024397]
  25. Front Immunol. 2021 Nov 25;12:732693 [PMID: 34899692]
  26. Yonsei Med J. 2011 Nov;52(6):879-91 [PMID: 22028150]
  27. Cell Biochem Biophys. 2018 Sep;76(3):391-400 [PMID: 29926429]
  28. Antimicrob Agents Chemother. 2015 Mar;59(3):1466-71 [PMID: 25534730]
  29. Proteomics Clin Appl. 2014 Dec;8(11-12):916-23 [PMID: 24899143]
  30. Infect Immun. 2010 May;78(5):1952-62 [PMID: 20194595]
  31. Front Microbiol. 2022 Aug 22;13:983963 [PMID: 36071964]
  32. Mol Cell Proteomics. 2009 Jan;8(1):145-56 [PMID: 18716313]
  33. Vaccine. 2014 May 7;32(22):2534-6 [PMID: 24188749]
  34. J Antimicrob Chemother. 2018 Mar 1;73(3):692-697 [PMID: 29244131]
  35. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  36. J Proteomics. 2012 Mar 16;75(6):1966-72 [PMID: 22245551]
  37. J Antimicrob Chemother. 2012 Jul;67(7):1607-15 [PMID: 22441575]
  38. PLoS Biol. 2005 Mar;3(3):e91 [PMID: 15760272]
  39. FEBS J. 2012 Jun;279(12):2192-200 [PMID: 22536855]
  40. Hum Vaccin Immunother. 2015;11(4):1065-73 [PMID: 25751377]
  41. Microb Pathog. 2011 Dec;51(6):402-6 [PMID: 21946278]
  42. Front Immunol. 2022 May 26;13:900509 [PMID: 35720310]
  43. Cell Microbiol. 2005 Aug;7(8):1127-38 [PMID: 16008580]
  44. Microb Pathog. 2020 Jun;143:104114 [PMID: 32145321]
  45. Expert Rev Anti Infect Ther. 2013 Dec;11(12):1333-53 [PMID: 24191943]
  46. Nat Methods. 2009 May;6(5):359-62 [PMID: 19377485]
  47. Sci Rep. 2017 Sep 29;7(1):12411 [PMID: 28963492]
  48. Infect Immun. 2012 Feb;80(2):651-6 [PMID: 22104104]
  49. BMC Genomics. 2016 Sep 15;17(1):732 [PMID: 27634541]
  50. Nucleic Acids Res. 2022 Jan 7;50(D1):D543-D552 [PMID: 34723319]

MeSH Term

Humans
Acinetobacter baumannii
Proteomics
Chromatography, Liquid
Tandem Mass Spectrometry
Bacterial Proteins
Anti-Bacterial Agents

Chemicals

Bacterial Proteins
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0proteinsvaccinecandidateimmunodominantpatientdrug-resistantbacterialidentifiedIgGsapproachextensivelycandidateshumanseveralcancapturedserasubtractiveresponseimmunesystemproteomicsbaumanniiBackground:onelife-threateningmultidrug-resistantpathogensworldwideCurrently50%-70%clinicalisolatesavailableantibioticoptionsinfectionslimitedstillneeddiscoverspecificantigeniceffectiveinfectiongrowthresearchrecentyearsmoleculesdevelopmentfarpublichealthauthoritiesapprovedvaccinesMethods:studyaimedidentifyimmunoprecipitatedspecificallypatients'relyinghypothesisinfectedperson'scaptureHereinouter-membranesecretedsensitiveusingobtainedhealthycontrolLiquidChromatography-TandemMassSpectrometryLC-MS/MSanalysisResults:Usingproteomicdetermined34uniquestrainevaluatingpredictedepitoperegionssolubilitytransversemembranecharacteristicsstructuralpropertiesselectednotableConclusion:triggeredantibiotic-resistantPrecipitationimmunoglobulinsnovelidentifyingtriggeridentificationAcinetobacterimmunoprecipitation

Similar Articles

Cited By