Research progress on anti-ovarian cancer mechanism of miRNA regulating tumor microenvironment.

MingHua Cui, YueHui Liu, Li Cheng, Tao Li, YongZhi Deng, Da Liu
Author Information
  1. MingHua Cui: Gynecology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China.
  2. YueHui Liu: Laboratory Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China.
  3. Li Cheng: Laboratory Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China.
  4. Tao Li: Department of Acupuncture and Massage, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China.
  5. YongZhi Deng: Department of Acupuncture and Massage, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China.
  6. Da Liu: School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China.

Abstract

Ovarian cancer is the most deadly malignancy among women, but its complex pathogenesis is unknown. Most patients with ovarian cancer have a poor prognosis due to high recurrence rates and chemotherapy resistance as well as the lack of effective early diagnostic methods. The tumor microenvironment mainly includes extracellular matrix, CAFs, tumor angiogenesis and immune-associated cells. The interaction between tumor cells and TME plays a key role in tumorigenesis, progression, metastasis and treatment, affecting tumor progression. Therefore, it is significant to find new tumor biomarkers and therapeutic targets. MicroRNAs are non-coding RNAs that post-transcriptionally regulate the expression of target genes and affect a variety of biological processes. Studies have shown that miRNAs regulate tumor development by affecting TME. In this review, we summarize the mechanisms by which miRNAs affect ovarian cancer by regulating TME and highlight the key role of miRNAs in TME, which provides new targets and theoretical basis for ovarian cancer treatment.

Keywords

References

  1. J Zhejiang Univ Sci B. 2020 Jan.;21(1):12-28 [PMID: 31898439]
  2. Cell Mol Immunol. 2014 Sep;11(5):495-502 [PMID: 24813230]
  3. Nat Rev Immunol. 2020 Jan;20(1):7-24 [PMID: 31467405]
  4. Cancer Manag Res. 2019 Jul 18;11:6691-6702 [PMID: 31410060]
  5. Braz J Med Biol Res. 2019;52(5):e7992 [PMID: 31038546]
  6. Cancer Res. 2012 Apr 1;72(7):1683-93 [PMID: 22307839]
  7. J Eur Acad Dermatol Venereol. 2020 Mar;34(3):e126-e129 [PMID: 31710393]
  8. Int J Mol Sci. 2020 Apr 28;21(9): [PMID: 32354198]
  9. Cancer Med. 2019 Aug;8(10):4709-4721 [PMID: 31222971]
  10. Immunol Rev. 2008 Aug;224:141-65 [PMID: 18759925]
  11. Mol Cancer. 2018 Feb 07;17(1):22 [PMID: 29415727]
  12. Cancer Lett. 2017 May 1;393:60-67 [PMID: 28216373]
  13. Front Oncol. 2021 Apr 01;11:631703 [PMID: 33869017]
  14. J Exp Clin Cancer Res. 2019 Feb 15;38(1):81 [PMID: 30770776]
  15. J Cell Sci. 2011 Feb 1;124(Pt 3):359-68 [PMID: 21224400]
  16. Anticancer Drugs. 2014 Aug;25(7):799-809 [PMID: 24686007]
  17. Breast Cancer Res. 2020 Jun 30;22(1):73 [PMID: 32605588]
  18. Mol Ther Nucleic Acids. 2019 Dec 6;18:882-892 [PMID: 31751911]
  19. Am J Med Sci. 2019 Oct;358(4):256-267 [PMID: 31353030]
  20. Int J Mol Med. 2020 Aug;46(2):609-620 [PMID: 32626953]
  21. Oncotarget. 2017 Mar 21;8(12):20145-20164 [PMID: 28423620]
  22. Mol Med Rep. 2018 Jun;17(6):8019-8030 [PMID: 29693703]
  23. Cancer Immunol Res. 2018 Dec;6(12):1578-1592 [PMID: 30396909]
  24. Nucleic Acids Res. 2012 Jan;40(2):761-74 [PMID: 21917858]
  25. J Ovarian Res. 2015 Dec 02;8:80 [PMID: 26626440]
  26. J Cell Commun Signal. 2020 Jun;14(2):233-244 [PMID: 32034654]
  27. Int J Mol Sci. 2021 Nov 14;22(22): [PMID: 34830186]
  28. Gynecol Oncol. 2009 Jan;112(1):55-9 [PMID: 18954897]
  29. JHEP Rep. 2021 Feb 04;3(3):100251 [PMID: 34151244]
  30. Cancer Lett. 2014 Sep 1;351(2):173-81 [PMID: 24952258]
  31. Int J Cancer. 2021 Jul 1;149(1):21-30 [PMID: 33231290]
  32. Cells. 2020 Jan 09;9(1): [PMID: 31936634]
  33. Semin Cancer Biol. 2020 Oct;65:65-79 [PMID: 31733291]
  34. Cancer Lett. 2015 Jan 28;356(2 Pt B):339-46 [PMID: 25449429]
  35. Nat Commun. 2019 Jul 5;10(1):3000 [PMID: 31278254]
  36. Int J Biol Sci. 2021 Jan 1;17(1):236-246 [PMID: 33390846]
  37. J Histochem Cytochem. 2018 Feb;66(2):67-83 [PMID: 29164988]
  38. J Clin Med. 2019 Nov 20;8(12): [PMID: 31757094]
  39. EBioMedicine. 2018 Dec;38:100-112 [PMID: 30487062]
  40. Cancer Med. 2020 Aug;9(16):5976-5988 [PMID: 32590883]
  41. J Cell Biochem. 2019 Aug;120(8):13187-13201 [PMID: 30957275]
  42. Obstet Gynecol Sci. 2021 Sep;64(5):444-453 [PMID: 34399564]
  43. Oncotarget. 2016 Jul 12;7(28):43076-43087 [PMID: 27172798]
  44. Cells. 2019 Jan 17;8(1): [PMID: 30658384]
  45. J Immunol. 2013 Mar 1;190(5):2437-46 [PMID: 23355742]
  46. Cancers (Basel). 2021 Apr 23;13(9): [PMID: 33922795]
  47. Front Oncol. 2021 Jul 27;11:722916 [PMID: 34386431]
  48. J Transl Med. 2022 Aug 4;20(1):351 [PMID: 35927652]
  49. MedComm (2020). 2020 Jun 03;1(1):47-68 [PMID: 34766109]
  50. J Exp Clin Cancer Res. 2020 Aug 3;39(1):149 [PMID: 32746878]
  51. Cell Oncol (Dordr). 2020 Aug;43(4):515-538 [PMID: 32418122]
  52. J Control Release. 2018 Mar 28;274:24-34 [PMID: 29391232]
  53. Oncol Rep. 2014 Nov;32(5):2070-6 [PMID: 25190487]
  54. Cell Commun Signal. 2021 Apr 23;19(1):47 [PMID: 33892745]
  55. Exp Mol Pathol. 2020 Apr;113:104381 [PMID: 31954715]
  56. Nat Immunol. 2020 Sep;21(9):974-982 [PMID: 32747813]
  57. Med Hypotheses. 2020 Nov;144:109885 [PMID: 32540605]
  58. Cell Oncol (Dordr). 2016 Oct;39(5):397-410 [PMID: 27126599]
  59. Cell Biosci. 2020 Jul 28;10:89 [PMID: 32742634]
  60. Int J Oncol. 2013 Feb;42(2):776-84 [PMID: 23254909]
  61. Cancer Discov. 2012 Dec;2(12):1100-8 [PMID: 23171795]
  62. Nat Rev Gastroenterol Hepatol. 2019 May;16(5):282-295 [PMID: 30778141]
  63. Trends Pharmacol Sci. 2016 Jul;37(7):606-617 [PMID: 27157716]
  64. Nat Commun. 2016 May 05;7:11406 [PMID: 27147225]
  65. Oncol Lett. 2013 Sep;6(3):795-800 [PMID: 24137413]
  66. Front Immunol. 2017 Mar 08;8:248 [PMID: 28337200]
  67. J Cell Physiol. 2019 Feb;234(2):1099-1110 [PMID: 30070704]
  68. Int J Mol Sci. 2022 Jun 16;23(12): [PMID: 35743145]
  69. Cancer Discov. 2012 Dec;2(12):1078-80 [PMID: 23230184]
  70. Cancers (Basel). 2020 Mar 29;12(4): [PMID: 32235370]
  71. Asia Pac J Clin Oncol. 2018 Dec;14(6):383-391 [PMID: 29575602]
  72. Gynecol Oncol. 2008 Jul;110(1):13-21 [PMID: 18589210]
  73. Mol Cell Biochem. 2019 Apr;454(1-2):177-189 [PMID: 30357530]
  74. J Hematol Oncol. 2020 Mar 28;13(1):25 [PMID: 32222150]
  75. Int J Cancer. 2017 Jul 15;141(2):220-230 [PMID: 28240776]
  76. Biochem Pharmacol. 2008 Sep 1;76(5):582-8 [PMID: 18619946]
  77. J Transl Med. 2014 Jan 06;12:4 [PMID: 24393345]
  78. FASEB J. 2021 Aug;35(8):e21776 [PMID: 34324740]
  79. Cancer Lett. 2019 Oct 1;461:1-9 [PMID: 31288064]
  80. Sci Rep. 2016 Dec 08;6:38498 [PMID: 27929108]
  81. Oncotarget. 2016 Aug 16;7(33):53254-53268 [PMID: 27449101]
  82. Int J Oncol. 2016 Jun;48(6):2236-46 [PMID: 27082441]
  83. Nat Rev Cancer. 2016 Aug 23;16(9):582-98 [PMID: 27550820]
  84. Mol Cancer. 2019 Mar 1;18(1):32 [PMID: 30823926]
  85. Oncol Lett. 2020 Jan;19(1):595-605 [PMID: 31897175]
  86. Fundam Clin Pharmacol. 2020 Apr;34(2):160-172 [PMID: 31642541]
  87. Cells. 2019 Jun 05;8(6): [PMID: 31195728]
  88. Oncogene. 2019 Aug;38(33):6095-6108 [PMID: 31289363]
  89. Cold Spring Harb Perspect Med. 2012 May;2(5):a006627 [PMID: 22553494]
  90. Adv Pharm Bull. 2020 Sep;10(4):556-565 [PMID: 33062602]
  91. Biomed Pharmacother. 2018 Nov;107:712-720 [PMID: 30138893]
  92. Signal Transduct Target Ther. 2020 Oct 19;5(1):242 [PMID: 33077737]
  93. J Hematol Oncol. 2019 Aug 22;12(1):84 [PMID: 31438991]
  94. Onco Targets Ther. 2020 Sep 28;13:9611-9622 [PMID: 33061443]
  95. J Cancer. 2019 Aug 7;10(19):4574-4587 [PMID: 31528221]
  96. Trends Cell Biol. 2022 Apr;32(4):285-294 [PMID: 34895986]
  97. Oncol Rev. 2020 May 29;14(2):475 [PMID: 32676171]
  98. Cancer Res. 2016 Dec 15;76(24):7194-7207 [PMID: 27742688]
  99. Theranostics. 2019 Oct 18;9(26):8206-8220 [PMID: 31754391]
  100. Cancer Lett. 2018 Oct 28;435:80-91 [PMID: 30098399]
  101. J Hematol Oncol. 2022 Jun 28;15(1):83 [PMID: 35765040]
  102. Mol Med Rep. 2019 May;19(5):3376-3392 [PMID: 30864705]
  103. Elife. 2020 Dec 28;9: [PMID: 33370234]
  104. Cancer Cell Int. 2019 Nov 07;19:281 [PMID: 31719795]
  105. Cancer Metastasis Rev. 2020 Sep;39(3):933-952 [PMID: 32435939]
  106. Oncol Rep. 2014 Nov;32(5):2127-33 [PMID: 25176450]
  107. Oncol Lett. 2020 Nov;20(5):234 [PMID: 32968456]
  108. Cancer Cell Int. 2019 Dec 21;19:347 [PMID: 31889899]
  109. Cells. 2020 Jan 23;9(2): [PMID: 31979244]
  110. Cell Tissue Res. 2016 Sep;365(3):607-19 [PMID: 27474009]
  111. J Ovarian Res. 2021 Jun 2;14(1):74 [PMID: 34078414]
  112. Mol Cancer. 2021 Jan 4;20(1):7 [PMID: 33397409]
  113. PLoS One. 2015 Jun 04;10(6):e0128886 [PMID: 26043084]
  114. Biochim Biophys Acta. 2016 Mar;1863(3):471-482 [PMID: 26554850]
  115. Cells. 2020 May 22;9(5): [PMID: 32456078]
  116. Oncogene. 2019 Apr;38(16):2885-2898 [PMID: 30568223]
  117. Biochim Biophys Acta Rev Cancer. 2020 Apr;1873(2):188361 [PMID: 32234508]
  118. Front Oncol. 2020 Nov 27;10:581007 [PMID: 33330058]
  119. Biochem Biophys Res Commun. 2019 Aug 13;516(1):96-101 [PMID: 31200958]
  120. Oncotarget. 2017 Apr 11;8(15):24853-24868 [PMID: 28206956]
  121. BMC Cancer. 2018 Nov 5;18(1):1065 [PMID: 30396333]
  122. Int J Mol Sci. 2021 Jun 18;22(12): [PMID: 34207286]
  123. Reprod Sci. 2019 Aug;26(8):1071-1081 [PMID: 30309296]
  124. Front Cell Dev Biol. 2021 Jun 30;9:652322 [PMID: 34277601]
  125. Mol Cancer. 2020 Jul 17;19(1):116 [PMID: 32680511]
  126. Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9845-50 [PMID: 23697367]
  127. J Ovarian Res. 2020 Sep 23;13(1):115 [PMID: 32967712]
  128. Cell. 2019 Oct 31;179(4):846-863.e24 [PMID: 31668803]
  129. Clin Epigenetics. 2019 Jan 15;11(1):7 [PMID: 30646939]
  130. Oncol Rep. 2017 Jul;38(1):522-528 [PMID: 28586039]

MeSH Term

Humans
Female
Tumor Microenvironment
MicroRNAs
Carcinoma, Ovarian Epithelial
Ovarian Neoplasms
Carcinogenesis

Chemicals

MicroRNAs

Word Cloud

Created with Highcharts 10.0.0tumorcancerTMEovarianmiRNAsmicroenvironmentcellskeyroleprogressiontreatmentaffectingnewtargetsregulateaffectregulatingmiRNAOvariandeadlymalignancyamongwomencomplexpathogenesisunknownpatientspoorprognosisduehighrecurrencerateschemotherapyresistancewelllackeffectiveearlydiagnosticmethodsmainlyincludesextracellularmatrixCAFsangiogenesisimmune-associatedinteractionplaystumorigenesismetastasisThereforesignificantfindbiomarkerstherapeuticMicroRNAsnon-codingRNAspost-transcriptionallyexpressiontargetgenesvarietybiologicalprocessesStudiesshowndevelopmentreviewsummarizemechanismshighlightprovidestheoreticalbasisResearchprogressanti-ovarianmechanismexosomesimmunologyovarian cancertumor microenvironment

Similar Articles

Cited By