High-Throughput Analysis Reveals miRNA Upregulating α-2,6-Sialic Acid through Direct miRNA-mRNA Interactions.

Faezeh Jame-Chenarboo, Hoi Hei Ng, Dawn Macdonald, Lara K Mahal
Author Information
  1. Faezeh Jame-Chenarboo: Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
  2. Hoi Hei Ng: Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
  3. Dawn Macdonald: Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
  4. Lara K Mahal: Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada. ORCID

Abstract

Chemical biology has revealed the importance of sialic acids as a major signal in physiology and disease. The terminal modification α-2,6-sialic acid is controlled by the enzymes ST6GAL1 and ST6GAL2. Dysregulation of this glycan impacts immunological recognition and cancer development. microRNAs (miRNA, miR), noncoding RNAs that downregulate protein expression, are important regulators of glycosylation. Using our recently developed high-throughput fluorescence assay (miRFluR), we comprehensively mapped the miRNA regulatory landscape of α-2,6-sialyltransferases ST6GAL1 and ST6GAL2. We found, contrary to expectations, the majority of miRNAs upregulate ST6GAL1 and α-2,6-sialylation in a variety of cancer cells. In contrast, miRNAs that regulate ST6GAL2 were predominantly downregulatory. Mutational analysis identified direct binding sites in the 3'-untranslated region (UTR) responsible for upregulation, confirming it is a direct effect. The miRNA binding proteins AGO2 and FXR1 were required for upregulation. Our results upend common assumptions surrounding miRNA, arguing that upregulation by these noncoding RNA is common. Indeed, for some proteins, upregulation may be the dominant function of miRNA. Our work also suggests that upregulatory miRNAs enhance overexpression of ST6GAL1 and α-2,6-sialylation, providing another potential pathway to explain the dysregulation observed in cancer and other disease states.

References

  1. Biochemistry. 2018 Sep 4;57(35):5247-5256 [PMID: 30086238]
  2. J Clin Lab Anal. 2020 Jul;34(7):e23266 [PMID: 32125723]
  3. Cell. 2007 Mar 23;128(6):1105-18 [PMID: 17382880]
  4. Sci Transl Med. 2021 Dec;13(622):eabg2919 [PMID: 34851695]
  5. Glycobiology. 2021 Jun 3;31(5):530-539 [PMID: 33320246]
  6. Adv Exp Med Biol. 2017;983:65-79 [PMID: 28639192]
  7. Cell. 2021 Sep 16;184(19):5031-5052.e26 [PMID: 34534465]
  8. Oncol Lett. 2019 Aug;18(2):983-989 [PMID: 31423157]
  9. Curr Opin Struct Biol. 2016 Oct;40:145-152 [PMID: 27744149]
  10. J Innate Immun. 2011;3(4):411-9 [PMID: 21178327]
  11. Proc Natl Acad Sci U S A. 2021 Jan 19;118(3): [PMID: 33431669]
  12. Nat Rev Genet. 2020 Oct;21(10):630-644 [PMID: 32709985]
  13. Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7327-32 [PMID: 26015571]
  14. JCI Insight. 2023 Oct 9;8(19): [PMID: 37643018]
  15. RNA. 2004 Oct;10(10):1507-17 [PMID: 15383676]
  16. Nature. 2019 Apr;568(7751):187-192 [PMID: 30944478]
  17. Onco Targets Ther. 2021 Aug 04;14:4335-4343 [PMID: 34376998]
  18. RNA. 2021 Sep;27(9):1004-1016 [PMID: 34108231]
  19. Science. 2015 Jan 23;347(6220):1260419 [PMID: 25613900]
  20. Nat Rev Drug Discov. 2021 Mar;20(3):217-243 [PMID: 33462432]
  21. Sci Rep. 2017 Jan 11;7:40384 [PMID: 28074905]
  22. Technol Cancer Res Treat. 2020 Jan-Dec;19:1533033820957001 [PMID: 32885717]
  23. J Biol Chem. 2016 Jan 15;291(3):1529-37 [PMID: 26589799]
  24. ACS Chem Biol. 2021 Oct 15;16(10):1900-1907 [PMID: 34085516]
  25. Mol Cell. 2016 Mar 3;61(5):760-773 [PMID: 26942679]
  26. Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1608-13 [PMID: 18227514]
  27. Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4338-43 [PMID: 24591635]
  28. Cancer Biomark. 2017;18(1):35-39 [PMID: 27814273]
  29. Bioinformatics. 2010 Jan 15;26(2):223-7 [PMID: 19933167]
  30. Cancer Cell. 2011 Jul 12;20(1):104-18 [PMID: 21741600]
  31. Cell Death Dis. 2018 Mar 7;9(3):372 [PMID: 29515098]
  32. Mol Syst Biol. 2010 Dec 21;6:450 [PMID: 21179022]
  33. Oncotarget. 2015 Jun 10;6(16):14153-64 [PMID: 25883224]
  34. PLoS One. 2013 Jul 09;8(7):e68204 [PMID: 23874542]
  35. Mol Cell Proteomics. 2021;20:100160 [PMID: 34634466]
  36. Cell. 2014 Jul 31;158(3):607-19 [PMID: 25083871]
  37. Nat Rev Genet. 2012 Mar 13;13(4):227-32 [PMID: 22411467]
  38. Cell. 2018 Mar 22;173(1):20-51 [PMID: 29570994]
  39. PLoS One. 2013 Aug 13;8(8):e71309 [PMID: 23967190]
  40. Science. 2015 Apr 3;348(6230):128-32 [PMID: 25838385]
  41. Nucleic Acids Res. 2020 Jul 27;48(13):7439-7453 [PMID: 32501500]
  42. Sci Rep. 2012;2:842 [PMID: 23150790]
  43. Nat Immunol. 2006 Feb;7(2):199-206 [PMID: 16369536]
  44. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4504-9 [PMID: 9539767]
  45. Science. 2007 Dec 21;318(5858):1931-4 [PMID: 18048652]
  46. EMBO Rep. 2007 Nov;8(11):1052-60 [PMID: 17932509]
  47. Science. 2019 Dec 20;366(6472): [PMID: 31806698]
  48. Science. 2020 Dec 4;370(6521):1186-1191 [PMID: 33273096]
  49. Cell Physiol Biochem. 2018;49(2):678-695 [PMID: 30165365]
  50. Biochemistry. 2020 Sep 1;59(34):3098-3110 [PMID: 31585501]
  51. Nat Rev Genet. 2015 Jul;16(7):421-33 [PMID: 26077373]
  52. Nat Chem Biol. 2014 Jan;10(1):69-75 [PMID: 24292068]
  53. Onco Targets Ther. 2020 Jan 29;13:903-914 [PMID: 32099394]
  54. ACS Chem Biol. 2022 Nov 18;17(11):2993-3012 [PMID: 35084820]
  55. Elife. 2015 Aug 12;4: [PMID: 26267216]

Word Cloud

Created with Highcharts 10.0.0miRNAα-2ST6GAL1upregulationST6GAL2cancermiRNAsdiseasenoncoding6-sialylationdirectbindingproteinscommonChemicalbiologyrevealedimportancesialicacidsmajorsignalphysiologyterminalmodification6-sialicacidcontrolledenzymesDysregulationglycanimpactsimmunologicalrecognitiondevelopmentmicroRNAsmiRRNAsdownregulateproteinexpressionimportantregulatorsglycosylationUsingrecentlydevelopedhigh-throughputfluorescenceassaymiRFluRcomprehensivelymappedregulatorylandscape6-sialyltransferasesfoundcontraryexpectationsmajorityupregulatevarietycellscontrastregulatepredominantlydownregulatoryMutationalanalysisidentifiedsites3'-untranslatedregionUTRresponsibleconfirmingeffectAGO2FXR1requiredresultsupendassumptionssurroundingarguingRNAIndeedmaydominantfunctionworkalsosuggestsupregulatoryenhanceoverexpressionprovidinganotherpotentialpathwayexplaindysregulationobservedstatesHigh-ThroughputAnalysisRevealsUpregulating6-SialicAcidDirectmiRNA-mRNAInteractions

Similar Articles

Cited By