An AI model of sonographer's evaluation+ S-Detect + elastography + clinical information improves the preoperative identification of benign and malignant breast masses.

Pengfei Sun, Ying Feng, Chen Chen, Andre Dekker, Linxue Qian, Zhixiang Wang, Jun Guo
Author Information
  1. Pengfei Sun: Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
  2. Ying Feng: Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
  3. Chen Chen: Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
  4. Andre Dekker: Department of Radiation Oncology (Maastro), GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands.
  5. Linxue Qian: Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
  6. Zhixiang Wang: Department of Radiation Oncology (Maastro), GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands.
  7. Jun Guo: Department of Ultrasound, Aerospace Center Hospital, Beijing, China.

Abstract

Purpose: The purpose of the study was to build an AI model with selected preoperative clinical features to further improve the accuracy of the assessment of benign and malignant breast nodules.
Methods: Patients who underwent ultrasound, strain elastography, and S-Detect before ultrasound-guided biopsy or surgical excision were enrolled. The diagnosis model was built using a logistic regression model. The diagnostic performances of different models were evaluated and compared.
Results: A total of 179 lesions (101 benign and 78 malignant) were included. The whole dataset consisted of a training set (145 patients) and an independent test set (34 patients). The AI models constructed based on clinical features, ultrasound features, and strain elastography to predict and classify benign and malignant breast nodules had ROC AUCs of 0.87, 0.81, and 0.79 in the test set. The AUCs of the sonographer and S-Detect were 0.75 and 0.82, respectively, in the test set. The AUC of the combined AI model with the best performance was 0.89 in the test set. The combined AI model showed a better specificity of 0.92 than the other models. The sonographer's assessment showed better sensitivity (0.97 in the test set).
Conclusion: The combined AI model could improve the preoperative identification of benign and malignant breast masses and may reduce unnecessary breast biopsies.

Keywords

References

  1. Radiology. 2015 Oct;277(1):56-63 [PMID: 25961633]
  2. CA Cancer J Clin. 2022 Jan;72(1):7-33 [PMID: 35020204]
  3. Inform Med Unlocked. 2021;22:100505 [PMID: 33363252]
  4. Ultrasonography. 2017 Jan;36(1):3-9 [PMID: 27184656]
  5. J Breast Cancer. 2016 Sep;19(3):316-323 [PMID: 27721882]
  6. SN Comput Sci. 2020;1(6):363 [PMID: 33163975]
  7. SN Comput Sci. 2021;2(5):384 [PMID: 34308367]
  8. Monogr Soc Res Child Dev. 2006;71(3):1-145 [PMID: 17199773]
  9. Radiol Clin North Am. 1996 May;34(3):565-96 [PMID: 8657872]
  10. Eur J Radiol. 2019 Oct;119:108658 [PMID: 31521878]
  11. Front Oncol. 2022 Jul 07;12:869421 [PMID: 35875151]
  12. Ultrasound Med Biol. 2015 May;41(5):1148-60 [PMID: 25795620]
  13. J Ultrasound. 2018 Jun;21(2):105-118 [PMID: 29681007]
  14. Radiol Clin North Am. 2017 Nov;55(6):1145-1162 [PMID: 28991557]
  15. J Natl Compr Canc Netw. 2022 Feb;20(2):167-192 [PMID: 35130500]
  16. Ultrasonography. 2018 Jul;37(3):217-225 [PMID: 28992680]
  17. Front Oncol. 2022 Feb 10;12:804632 [PMID: 35223484]
  18. Radiology. 2006 May;239(2):341-50 [PMID: 16484352]
  19. Breast Cancer Res Treat. 2016 Oct;159(3):395-406 [PMID: 27562585]
  20. Breast Cancer Res Treat. 2015 Sep;153(2):455-64 [PMID: 26290416]
  21. Radiology. 2004 Mar;230(3):820-3 [PMID: 14739315]
  22. J Clin Oncol. 2008 Mar 10;26(8):1364-70 [PMID: 18323559]
  23. Radiol Med. 2018 Jul;123(7):498-506 [PMID: 29569216]
  24. Medicine (Baltimore). 2019 Jan;98(3):e14146 [PMID: 30653149]
  25. IEEE Access. 2021 Feb 10;9:30551-30572 [PMID: 34976571]
  26. Inform Med Unlocked. 2020;20:100412 [PMID: 32835084]
  27. SN Comput Sci. 2020;1(4):206 [PMID: 33063049]
  28. J Natl Cancer Cent. 2022 Feb 27;2(1):1-9 [PMID: 39035212]

Word Cloud

Created with Highcharts 10.0.00AImodelbreastsetbenignmalignanttestpreoperativeclinicalfeatureselastographyS-DetectdiagnosismodelscombinedimproveassessmentnodulesultrasoundstrainpatientsAUCsshowedbettersonographer'sidentificationmasses+Purpose:purposestudybuildselectedaccuracyMethods:Patientsunderwentultrasound-guidedbiopsysurgicalexcisionenrolledbuiltusinglogisticregressiondiagnosticperformancesdifferentevaluatedcomparedResults:total179lesions10178includedwholedatasetconsistedtraining145independent34constructedbasedpredictclassifyROC878179sonographer7582respectivelyAUCbestperformance89specificity92sensitivity97Conclusion:mayreduceunnecessarybiopsiesevaluation+informationimprovestumorcomputer-aidedradiofrequencyultrasonography

Similar Articles

Cited By