Diet quality impairs male and female reproductive performance and affects the opportunity for selection in an insect model.

Lennart Winkler, Tim Janicke
Author Information
  1. Lennart Winkler: Applied Zoology TU Dresden Dresden Germany. ORCID
  2. Tim Janicke: Applied Zoology TU Dresden Dresden Germany. ORCID

Abstract

Environmental factors can have profound effects on the strength and direction of selection and recent studies suggest that such environment-dependent selection can be sex-specific. Sexual selection theory predicts that male fitness is more condition dependent compared to female fitness, suggesting that male fitness is more sensitive to environmental stress. However, our knowledge about the effect of environmental factors on sex-specific reproductive performance and on sex differences in the opportunity for selection is still very limited. In the present study, we investigated the sex-specific effects of diet quality (yeast deprivation and flour type) in the red flour beetle . Specifically, we manipulated yeast supplementation in wheat and whole-wheat flour in competition assays allowing us to test for sex-specific effects of food quality (i) on reproductive success and (ii) on the opportunity for selection. Our data show that yeast deprivation in wheat flour had significantly negative effects on body mass and reproductive success of both sexes, while high-quality flour (whole-wheat flour) was able to buffer the negative impact to a large extent. Importantly, our data suggest no sex-specific effect of dietary stress on reproductive success because the magnitude of the negative effect of yeast deprivation was similar for males and females. Moreover, our study demonstrates that low food quality inflated the opportunity for selection and did not differ between sexes neither under benign nor stressful dietary conditions. We discuss the implications of our findings for the adaptation to stressful environments.

Keywords

Associated Data

Dryad | 10.5061/dryad.05qfttf6h

References

  1. PLoS One. 2016 Feb 05;11(2):e0148632 [PMID: 26849356]
  2. J Insect Physiol. 2007 Feb;53(2):132-8 [PMID: 17196974]
  3. Evol Lett. 2017 Jun 07;1(2):102-113 [PMID: 30283643]
  4. Evolution. 2009 Mar;63(3):569-82 [PMID: 19154364]
  5. Funct Ecol. 2022 Dec;36(12):3096-3106 [PMID: 37064077]
  6. Front Zool. 2008 Jul 10;5:10 [PMID: 18616795]
  7. Heredity (Edinb). 1948 Dec;2(Pt. 3):349-68 [PMID: 18103134]
  8. J Econ Entomol. 2011 Dec;104(6):2087-94 [PMID: 22299375]
  9. Vet Immunol Immunopathol. 1994 May;41(1-2):125-39 [PMID: 8066989]
  10. Ecol Evol. 2022 Nov 22;12(11):e9533 [PMID: 36440316]
  11. Oecologia. 2013 Jun;172(2):409-16 [PMID: 23124333]
  12. Vet Immunol Immunopathol. 2002 Feb;85(1-2):41-50 [PMID: 11867166]
  13. Ecol Lett. 2018 Dec;21(12):1885-1894 [PMID: 30288910]
  14. Curr Biol. 2008 Jul 22;18(14):1062-6 [PMID: 18635354]
  15. Evol Appl. 2019 Feb 19;12(7):1371-1384 [PMID: 31417621]
  16. J Cereal Sci. 2007;46(1):93-95 [PMID: 19030121]
  17. FEBS Lett. 2005 May 9;579(12):2541-5 [PMID: 15862287]
  18. Am Nat. 2013 Jul;182(1):91-102 [PMID: 23778229]
  19. J Evol Biol. 2009 Jan;22(1):124-33 [PMID: 19120814]
  20. Nat Commun. 2019 May 1;10(1):2017 [PMID: 31043615]
  21. Biol Rev Camb Philos Soc. 2008 May;83(2):151-71 [PMID: 18429767]
  22. J Zool (1987). 2015 May;296(1):1-5 [PMID: 26019406]
  23. J Gen Physiol. 1924 May 20;6(5):565-85 [PMID: 19872096]
  24. Elife. 2021 Nov 17;10: [PMID: 34787569]
  25. Heredity (Edinb). 2021 Jun;126(6):869-883 [PMID: 33767370]
  26. PLoS One. 2016 May 11;11(5):e0154468 [PMID: 27167120]
  27. Evolution. 2009 Jul;63(7):1673-84 [PMID: 19228185]
  28. Evol Lett. 2018 Aug 16;2(5):511-523 [PMID: 30283698]
  29. Nat Rev Genet. 2014 Apr;15(4):247-58 [PMID: 24614309]
  30. Sci Rep. 2015 Oct 20;5:15469 [PMID: 26482533]
  31. Acta Biotheor. 1998 Jun;46(2):157-60 [PMID: 9691260]
  32. J Gerontol A Biol Sci Med Sci. 2020 Jul 13;75(8):1431-1438 [PMID: 31362304]
  33. Elife. 2014 Oct 02;3: [PMID: 25275323]
  34. Biochim Biophys Acta. 1956 Apr;20(1):135-49 [PMID: 13315360]
  35. Evolution. 2013 Oct;67(10):2849-60 [PMID: 24094338]
  36. Am Nat. 2013 Mar;181(3):291-300 [PMID: 23448880]
  37. Dev Cell. 2018 Sep 24;46(6):781-793.e4 [PMID: 30253170]
  38. Integr Comp Biol. 2005 Nov;45(5):945-51 [PMID: 21676845]
  39. Hum Biol. 1958 Feb;30(1):1-13 [PMID: 13513111]
  40. Am Nat. 2015 Jun;185(6):756-68 [PMID: 25996861]
  41. J Evol Biol. 2017 Jan;30(1):161-173 [PMID: 27749005]
  42. J Evol Biol. 2020 Apr;33(4):544-550 [PMID: 31961473]
  43. J Anim Ecol. 2022 Jan;91(1):124-137 [PMID: 34652857]
  44. Ecol Evol. 2016 Jan 18;6(3):830-41 [PMID: 26865970]
  45. Sci Adv. 2016 Feb 12;2(2):e1500983 [PMID: 26933680]
  46. Am Nat. 2016 Oct;188(4):E98-E112 [PMID: 27622882]

Word Cloud

Created with Highcharts 10.0.0selectionfloursex-specificreproductiveopportunityeffectsqualityyeastmalefitnessenvironmentalstresseffectdeprivationsuccessnegativedietaryfactorscansuggestconditionfemaleperformancestudywheatwhole-wheatfooddatasexesstressfulEnvironmentalprofoundstrengthdirectionrecentstudiesenvironment-dependentSexualtheorypredictsdependentcomparedsuggestingsensitiveHoweverknowledgesexdifferencesstilllimitedpresentinvestigateddiettyperedbeetleSpecificallymanipulatedsupplementationcompetitionassaysallowingustestiishowsignificantlybodymasshigh-qualityablebufferimpactlargeextentImportantlymagnitudesimilarmalesfemalesMoreoverdemonstrateslowinflateddifferneitherbenignconditionsdiscussimplicationsfindingsadaptationenvironmentsDietimpairsaffectsinsectmodeldependencerestrictionsexualsex���specific

Similar Articles

Cited By