Contrast-Enhanced Ultrasound with Optimized Aperture Patterns and Bubble Segmentation Based on Echo Phase.

Ting-Yu Lai, Michalakis A Averkiou
Author Information
  1. Ting-Yu Lai: Department of Bioengineering, University of Washington, Seattle, Washington, USA.
  2. Michalakis A Averkiou: Department of Bioengineering, University of Washington, Seattle, Washington, USA. Electronic address: maverk@uw.edu.

Abstract

Amplitude modulation (AM) suppresses tissue signals and detects microbubble signals in contrast-enhanced ultrasound (CEUS) and is often implemented with checkerboard apertures. However, possible crosstalk between transmitting and non-transmitting array elements may compromise tissue suppression in AM. Using AM aperture patterns other than the conventional checkerboard approach (one on, one off) may reduce the degree of crosstalk and increase the contrast-to-tissue-ratio (CTR) compared with conventional AM. Furthermore, previous studies have reported that the phase difference between the echoes in AM pulsing sequences may be used to segment tissue and microbubbles and improve tissue signal suppression and the CTR of CEUS images. However, the CTR of the image produced by alternative AM aperture patterns and the effect of segmentation approach on these alternative apertures have not been investigated. We evaluated a number of AM aperture patterns to find an optimal AM aperture pattern that provides the highest CTR. We found that the aperture that uses alternating groups of two elements, AM2, had the highest CTR for the probe evaluated. In addition, a segmentation technique based on echo phase differences (between the full and half-pulses, ΔΦ, between the complementary half-pulses, ΔΦ, and the maximum of the two ΔΦ) was also considered in the AM aperture optimization process. The segmentation approach increases the CTR by about 25 dB for all apertures. Finally, AM2 segmented with ΔΦ had a 7-dB higher CTR in a flow phantom and a 6-dB higher contrast in a perfused pig liver than conventional AM segmented with ΔΦ, and it is the optimal transmit aperture design.

Keywords

References

  1. IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Aug;65(8):1389-1401 [PMID: 29993575]
  2. AJR Am J Roentgenol. 2015 Jul;205(1):W56-66 [PMID: 26102419]
  3. Phys Med Biol. 2013 Sep 21;58(18):6447-58 [PMID: 23999099]
  4. Circulation. 2001 Jul 17;104(3):352-7 [PMID: 11457757]
  5. IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Dec;59(12):2676-83 [PMID: 23221216]
  6. IEEE Trans Med Imaging. 2015 Feb;34(2):433-40 [PMID: 25265604]
  7. Invest Radiol. 2019 Aug;54(8):500-516 [PMID: 31058661]
  8. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(2):372-82 [PMID: 18238434]
  9. J Acoust Soc Am. 1999 Dec;106(6):3665-77 [PMID: 10615705]
  10. Invest Radiol. 2014 Dec;49(12):794-800 [PMID: 24991866]
  11. Clin Mol Hepatol. 2013 Mar;19(1):1-16 [PMID: 23593604]
  12. Ultrasound Med Biol. 2018 Oct;44(10):2131-2142 [PMID: 30057134]
  13. Ultrasonics. 2006 Dec 22;44 Suppl 1:e5-15 [PMID: 16959281]
  14. Nature. 2015 Nov 26;527(7579):499-502 [PMID: 26607546]
  15. Ultrasound Med Biol. 2016 Nov;42(11):2676-2686 [PMID: 27554068]
  16. Sci Rep. 2019 Sep 27;9(1):13961 [PMID: 31562381]
  17. Ultrasound Med Biol. 2020 Mar;46(3):498-517 [PMID: 31813583]
  18. IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jan;61(1):102-19 [PMID: 24402899]
  19. Vet Radiol Ultrasound. 1997 Sep-Oct;38(5):387-93 [PMID: 9335099]
  20. Ultraschall Med. 2012 Aug;33(4):344-51 [PMID: 22843433]
  21. Phys Med Biol. 2014 Oct 7;59(19):L1-L13 [PMID: 25207828]
  22. Ultrason Imaging. 2006 Jul;28(3):129-43 [PMID: 17147055]
  23. IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Mar;69(3):1032-1040 [PMID: 35073259]
  24. Ultrasound Med Biol. 2010 Jan;36(1):68-77 [PMID: 19900749]
  25. IEEE Trans Ultrason Ferroelectr Freq Control. 2001 Jan;48(1):232-48 [PMID: 11367791]
  26. IEEE Trans Ultrason Ferroelectr Freq Control. 2013 May;60(5):909-23 [PMID: 23661125]
  27. BJU Int. 2011 Aug;108(3):349-54 [PMID: 21044245]
  28. Radiology. 2000 Apr;215(1):153-61 [PMID: 10751481]
  29. Radiology. 2012 Feb;262(2):672-9 [PMID: 22156991]
  30. Ultrasound Med Biol. 2014 Sep;40(9):2217-30 [PMID: 25023101]
  31. Br J Radiol. 2013 Mar;86(1023):20120536 [PMID: 23392189]
  32. Ultrasound Med Biol. 2010 Apr;36(4):531-50 [PMID: 20350680]
  33. IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262-7 [PMID: 18263145]
  34. Eur Radiol. 2004 Oct;14 Suppl 8:P4-10 [PMID: 15700327]
  35. IEEE Trans Ultrason Ferroelectr Freq Control. 2021 May;68(5):1721-1728 [PMID: 33428569]
  36. Circulation. 2003 Jul 22;108(3):336-41 [PMID: 12835208]

Grants

  1. T32 EB001650/NIBIB NIH HHS

MeSH Term

Animals
Swine
Microbubbles
Ultrasonography
Phantoms, Imaging
Liver

Word Cloud

Created with Highcharts 10.0.0AMapertureCTRΔΦtissuesegmentationaperturesmaysuppressionpatternsconventionalapproachphaseAmplitudemodulationsignalsultrasoundCEUScheckerboardHowevercrosstalkelementsonealternativeevaluatedoptimalhighesttwoAM2echohalf-pulsessegmentedhighersuppressesdetectsmicrobubblecontrast-enhancedoftenimplementedpossibletransmittingnon-transmittingarraycompromiseUsingreducedegreeincreasecontrast-to-tissue-ratiocomparedFurthermorepreviousstudiesreporteddifferenceechoespulsingsequencesusedsegmentmicrobubblesimprovesignalimagesimageproducedeffectinvestigatednumberfindpatternprovidesfoundusesalternatinggroupsprobeadditiontechniquebaseddifferencesfullcomplementarymaximumalsoconsideredoptimizationprocessincreases25dBFinally7-dBflowphantom6-dBcontrastperfusedpiglivertransmitdesignContrast-EnhancedUltrasoundOptimizedAperturePatternsBubbleSegmentationBasedEchoPhaseContrast-enhancedMicrobubbleTissueTissue–bubbleUltrafastimaging

Similar Articles

Cited By