Time-course RNA-Seq profiling reveals isoform-level gene expression dynamics of the cGAS-STING pathway.

Jing Sun, Lu Li, Jiameng Hu, Yan Gao, Jinyi Song, Xiang Zhang, Haiyang Hu
Author Information
  1. Jing Sun: State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, China.
  2. Lu Li: State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, China.
  3. Jiameng Hu: State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, China.
  4. Yan Gao: State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, China.
  5. Jinyi Song: State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, China.
  6. Xiang Zhang: State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, China.
  7. Haiyang Hu: State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, China.

Abstract

The cGAS-STING pathway, orchestrating complicated transcriptome-wide immune responses, is essential for host antiviral defense but can also drive immunopathology in severe COVID-19. Here, we performed time-course RNA-Seq experiments to dissect the transcriptome expression dynamics at the gene-isoform level after cGAS-STING pathway activation. The in-depth time-course transcriptome after cGAS-STING pathway activation within 12 h enabled quantification of 48,685 gene isoforms. By employing regression models, we obtained 13,232 gene isoforms with expression patterns significantly associated with the process of cGAS-STING pathway activation, which were named activation-associated isoforms. The combination of hierarchical and k-means clustering algorithms revealed four major expression patterns of activation-associated isoforms, including two clusters with increased expression patterns enriched in cell cycle, autophagy, antiviral innate-immune functions, and COVID-19 coronavirus disease pathway, and two clusters showing decreased expression pattern that mainly involved in ncRNA metabolism, translation process, and mRNA processing. Importantly, by merging four clusters of activation-associated isoforms, we identified three types of genes that underwent isoform usage alteration during the cGAS-STING pathway activation. We further found that genes exhibiting protein-coding and non-protein-coding gene isoform usage alteration were strongly enriched for the factors involved in innate immunity and RNA splicing. Notably, overexpression of an enriched splicing factor, EFTUD2, shifted transcriptome towards the cGAS-STING pathway activated status and promoted protein-coding isoform abundance of several key regulators of the cGAS-STING pathway. Taken together, our results revealed the isoform-level gene expression dynamics of the cGAS-STING pathway and uncovered novel roles of splicing factors in regulating cGAS-STING pathway mediated immune responses.

Keywords

References

  1. Nat Immunol. 2015 Oct;16(10):1025-33 [PMID: 26343537]
  2. Nature. 2018 Sep;561(7722):258-262 [PMID: 30135585]
  3. Nat Rev Mol Cell Biol. 2020 Sep;21(9):501-521 [PMID: 32424334]
  4. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5743-8 [PMID: 19307592]
  5. Sci Signal. 2022 Apr 12;15(729):eabg8744 [PMID: 35412852]
  6. Signal Transduct Target Ther. 2022 Mar 30;7(1):106 [PMID: 35354788]
  7. Nat Cell Biol. 2016 Dec 23;19(1):1-9 [PMID: 28008184]
  8. PLoS Genet. 2013 Oct;9(10):e1003855 [PMID: 24204290]
  9. J Biol Chem. 2010 Apr 23;285(17):12543-50 [PMID: 20200155]
  10. PLoS One. 2012;7(4):e34177 [PMID: 22509276]
  11. Immunity. 2008 Oct 17;29(4):538-50 [PMID: 18818105]
  12. Nucleic Acids Res. 2019 Jan 8;47(D1):D745-D751 [PMID: 30407521]
  13. Sci Immunol. 2021 May 18;6(59): [PMID: 34010142]
  14. Nat Rev Immunol. 2004 Dec;4(12):931-40 [PMID: 15573128]
  15. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  16. Cell Discov. 2021 Jun 22;7(1):46 [PMID: 34155193]
  17. J Clin Invest. 2019 Feb 1;129(2):546-555 [PMID: 30561388]
  18. Nat Commun. 2017 Jun 13;8:15676 [PMID: 28607490]
  19. Science. 2020 Sep 11;369(6509):1318-1330 [PMID: 32913098]
  20. Nature. 2017 Aug 24;548(7668):461-465 [PMID: 28738408]
  21. Nature. 2008 Nov 27;456(7221):470-6 [PMID: 18978772]
  22. Nature. 2009 Oct 22;461(7267):1071-8 [PMID: 19847258]
  23. J Biol Chem. 2008 Dec 19;283(51):35590-7 [PMID: 18977754]
  24. J Virol. 2015 Jul;89(13):6608-18 [PMID: 25878102]
  25. Sci Immunol. 2021 May 18;6(59): [PMID: 34010139]
  26. Nature. 2019 Mar;567(7747):262-266 [PMID: 30842662]
  27. Cell Death Dis. 2020 Oct 6;11(10):830 [PMID: 33024090]
  28. Mol Biol Evol. 2018 May 1;35(5):1063-1077 [PMID: 29474580]
  29. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  30. J Clin Invest. 2022 Feb 1;132(3): [PMID: 34905508]
  31. Bioinformatics. 2016 Oct 1;32(19):3047-8 [PMID: 27312411]
  32. Immunol Rev. 2013 May;253(1):216-36 [PMID: 23550649]
  33. Science. 2013 Feb 15;339(6121):826-30 [PMID: 23258412]
  34. Genes Immun. 2012 Jun;13(4):346-50 [PMID: 22237416]
  35. Nat Immunol. 2022 Apr;23(4):478-480 [PMID: 35301509]
  36. J Immunol. 2014 Feb 1;192(3):1162-70 [PMID: 24391220]
  37. Annu Rev Immunol. 2020 Apr 26;38:79-98 [PMID: 31800327]
  38. Nucleic Acids Res. 2018 May 4;46(8):4054-4071 [PMID: 29547894]
  39. Genetics. 2014 Jun;197(2):485-96 [PMID: 24361939]
  40. Nat Methods. 2017 Apr;14(4):417-419 [PMID: 28263959]
  41. Comput Struct Biotechnol J. 2022 Apr 09;20:1785-1797 [PMID: 35495108]
  42. Cell Immunol. 2020 Oct;356:104188 [PMID: 32763501]
  43. Nature. 2022 Mar;603(7899):145-151 [PMID: 35045565]
  44. Cell Rep. 2016 Aug 9;16(6):1492-1501 [PMID: 27477283]
  45. EMBO J. 2016 Apr 15;35(8):831-44 [PMID: 26903602]
  46. Nat Med. 2018 Jan;24(1):50-61 [PMID: 29176737]
  47. BMC Genomics. 2017 Aug 7;18(1):583 [PMID: 28784092]
  48. BMC Bioinformatics. 2021 May 25;22(1):266 [PMID: 34034652]

Word Cloud

Created with Highcharts 10.0.0pathwaycGAS-STINGexpressiongeneisoformsactivationisoformCOVID-19time-courseRNA-Seqtranscriptomedynamicspatternsactivation-associatedclustersenrichedfactorssplicingimmuneresponsesantiviralprocessrevealedfourtwoinvolvedgenesusagealterationprotein-codingisoform-levelorchestratingcomplicatedtranscriptome-wideessentialhostdefensecanalsodriveimmunopathologysevereperformedexperimentsdissectgene-isoformlevelin-depthwithin12 henabledquantification48685employingregressionmodelsobtained13232significantlyassociatednamedcombinationhierarchicalk-meansclusteringalgorithmsmajorincludingincreasedcellcycleautophagyinnate-immunefunctionscoronavirusdiseaseshowingdecreasedpatternmainlyncRNAmetabolismtranslationmRNAprocessingImportantlymergingidentifiedthreetypesunderwentfoundexhibitingnon-protein-codingstronglyinnateimmunityRNANotablyoverexpressionfactorEFTUD2shiftedtowardsactivatedstatuspromotedabundanceseveralkeyregulatorsTakentogetherresultsuncoverednovelrolesregulatingmediatedTime-courseprofilingrevealsGeneSplicing

Similar Articles

Cited By