Cluster detection with random neighbourhood covering: Application to invasive Group A Streptococcal disease.

Massimo Cavallaro, Juliana Coelho, Derren Ready, Valerie Decraene, Theresa Lamagni, Noel D McCarthy, Dan Todkill, Matt J Keeling
Author Information
  1. Massimo Cavallaro: The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom. ORCID
  2. Juliana Coelho: UK Health Security Agency, United Kingdom.
  3. Derren Ready: UK Health Security Agency, United Kingdom.
  4. Valerie Decraene: UK Health Security Agency, United Kingdom.
  5. Theresa Lamagni: UK Health Security Agency, United Kingdom. ORCID
  6. Noel D McCarthy: The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom. ORCID
  7. Dan Todkill: UK Health Security Agency, United Kingdom.
  8. Matt J Keeling: The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom. ORCID

Abstract

The rapid detection of outbreaks is a key step in the effective control and containment of infectious diseases. In particular, the identification of cases which might be epidemiologically linked is crucial in directing outbreak-containment efforts and shaping the intervention of public health authorities. Often this requires the detection of clusters of cases whose numbers exceed those expected by a background of sporadic cases. Quantifying exceedances rapidly is particularly challenging when only few cases are typically reported in a precise location and time. To address such important public health concerns, we present a general method which can detect spatio-temporal deviations from a Poisson point process and estimate the odds of an isolate being part of a cluster. This method can be applied to diseases where detailed geographical information is available. In addition, we propose an approach to explicitly take account of delays in microbial typing. As a case study, we considered invasive group A Streptococcus infection events as recorded and typed by Public Health England from 2015 to 2020.

References

  1. Epidemiol Infect. 2014 Sep;142(9):1869-76 [PMID: 24690264]
  2. Front Public Health. 2018 Mar 09;6:59 [PMID: 29662874]
  3. PLoS One. 2017 Jul 17;12(7):e0181227 [PMID: 28715489]
  4. Stat Med. 2011 Feb 28;30(5):569-83 [PMID: 21312220]
  5. MMWR Recomm Rep. 2001 Jul 27;50(RR-13):1-35; quiz CE1-7 [PMID: 18634202]
  6. J Urban Health. 2003 Jun;80(2 Suppl 1):i89-96 [PMID: 12791783]
  7. PLoS One. 2016 Aug 11;11(8):e0160759 [PMID: 27513749]
  8. Epidemiol Infect. 2012 Jan;140(1):100-5 [PMID: 21473803]
  9. Epidemiol Infect. 2020 Jun 18;148:e122 [PMID: 32614283]
  10. Public Health. 2013 Aug;127(8):777-81 [PMID: 23870845]
  11. Emerg Med J. 2012 Dec;29(12):954-60 [PMID: 22366039]
  12. PLoS Med. 2005 Mar;2(3):e59 [PMID: 15719066]
  13. J Public Health (Oxf). 2017 Sep 1;39(3):e111-e117 [PMID: 27451417]
  14. Emerg Infect Dis. 2022 May;28(5): [PMID: 35451366]
  15. Lancet Glob Health. 2020 Apr;8(4):e511-e523 [PMID: 32199120]
  16. Epidemiol Infect. 2012 Dec;140(12):2152-6 [PMID: 22892324]
  17. J Clin Microbiol. 2008 Jul;46(7):2359-67 [PMID: 18463210]
  18. Bioinformatics. 2015 Nov 15;31(22):3660-5 [PMID: 26198105]
  19. Euro Surveill. 2017 Jan 19;22(3): [PMID: 28128090]
  20. Epidemiol Infect. 2018 Aug 15;147:e4 [PMID: 30109840]
  21. Biometrics. 2011 Mar;67(1):106-15 [PMID: 20374242]
  22. BMC Public Health. 2017 May 19;17(1):477 [PMID: 28525991]
  23. Am J Epidemiol. 1990 Aug;132(2):355-65 [PMID: 2372012]
  24. Int J Infect Dis. 2016 Jul;48:22-8 [PMID: 27143522]
  25. Bioinformatics. 2019 Sep 1;35(17):3110-3118 [PMID: 30689731]
  26. Stat Med. 2013 Mar 30;32(7):1206-22 [PMID: 22941770]
  27. PLoS Negl Trop Dis. 2018 Mar 19;12(3):e0006335 [PMID: 29554121]
  28. JAMA. 2016 Sep 20;316(11):1193-1204 [PMID: 27654605]
  29. Sci Rep. 2018 Feb 12;8(1):2840 [PMID: 29434230]
  30. Stat Med. 1995 Apr 30;14(8):799-810 [PMID: 7644860]
  31. PLoS One. 2017 Sep 1;12(9):e0183992 [PMID: 28863159]
  32. Int J Health Geogr. 2011 Mar 31;10:23 [PMID: 21453514]

Grants

  1. MR/V038613/1/Medical Research Council
  2. /Wellcome Trust
  3. /British Heart Foundation
  4. /Department of Health

MeSH Term

Humans
Cluster Analysis
Streptococcal Infections
Disease Outbreaks
England

Word Cloud

Created with Highcharts 10.0.0casesdetectiondiseasespublichealthmethodcaninvasiverapidoutbreakskeystepeffectivecontrolcontainmentinfectiousparticularidentificationmightepidemiologicallylinkedcrucialdirectingoutbreak-containmenteffortsshapinginterventionauthoritiesOftenrequiresclusterswhosenumbersexceedexpectedbackgroundsporadicQuantifyingexceedancesrapidlyparticularlychallengingtypicallyreportedpreciselocationtimeaddressimportantconcernspresentgeneraldetectspatio-temporaldeviationsPoissonpointprocessestimateoddsisolatepartclusterapplieddetailedgeographicalinformationavailableadditionproposeapproachexplicitlytakeaccountdelaysmicrobialtypingcasestudyconsideredgroupStreptococcusinfectioneventsrecordedtypedPublicHealthEngland20152020Clusterrandomneighbourhoodcovering:ApplicationGroupStreptococcaldisease

Similar Articles

Cited By