Right hemispheric white matter hyperintensities improve the prediction of spatial neglect severity in acute stroke.

Lisa Röhrig, Christoph Sperber, Leonardo Bonilha, Christopher Rorden, Hans-Otto Karnath
Author Information
  1. Lisa Röhrig: Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany.
  2. Christoph Sperber: Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany.
  3. Leonardo Bonilha: Department of Neurology, Emory University, Atlanta, GA 30322, USA.
  4. Christopher Rorden: Department of Psychology, University of South Carolina, Columbia, SC 29208, USA.
  5. Hans-Otto Karnath: Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany; Department of Psychology, University of South Carolina, Columbia, SC 29208, USA. Electronic address: karnath@uni-tuebingen.de.

Abstract

White matter hyperintensities (WMH) are frequently observed in brain scans of elderly people. They are associated with an increased risk of stroke, cognitive decline, and dementia. However, it is unknown yet if measures of WMH provide information that improve the understanding of poststroke outcome compared to only state-of-the-art stereotaxic structural lesion data. We implemented high-dimensional machine learning models, based on support vector regression, to predict the severity of spatial neglect in 103 acute right hemispheric stroke patients. We found that (1) the additional information of right hemispheric or bilateral voxel-based topographic WMH extent indeed yielded a significant improvement in predicting acute neglect severity (compared to the voxel-based stroke lesion map alone). (2) Periventricular WMH appeared more relevant for prediction than deep subcortical WMH. (3) Among different measures of WMH, voxel-based maps as measures of topographic extent allowed more accurate predictions compared to the use of traditional ordinally assessed visual rating scales (Fazekas-scale, Cardiovascular Health Study-scale). In summary, topographic WMH appear to be a valuable clinical imaging biomarker for predicting the severity of cognitive deficits and bears great potential for rehabilitation guidance of acute stroke patients.

Keywords

References

  1. Lancet Neurol. 2013 Aug;12(8):822-38 [PMID: 23867200]
  2. PeerJ Comput Sci. 2021 Jul 5;7:e623 [PMID: 34307865]
  3. AJR Am J Roentgenol. 1987 Aug;149(2):351-6 [PMID: 3496763]
  4. Lancet Neurol. 2013 May;12(5):483-97 [PMID: 23602162]
  5. Stroke. 2007 Dec;38(12):3172-4 [PMID: 17962601]
  6. Brain. 2020 Jul 1;143(7):2173-2188 [PMID: 32572442]
  7. J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205 [PMID: 8126267]
  8. Acta Neuropathol. 2011 Aug;122(2):171-85 [PMID: 21706175]
  9. Neuroimage Clin. 2017 Feb 24;14:552-565 [PMID: 28337410]
  10. Biometrics. 1977 Mar;33(1):159-74 [PMID: 843571]
  11. Eur J Neurol. 2020 Jun;27(6):959-966 [PMID: 32124496]
  12. Brain Behav. 2019 Dec;9(12):e01457 [PMID: 31692294]
  13. Cortex. 2016 Apr;77:54-68 [PMID: 26922504]
  14. Neuroimage. 2017 Jan 15;145(Pt B):166-179 [PMID: 27989847]
  15. Neurobiol Aging. 2013 Dec;34(12):2740-7 [PMID: 23850341]
  16. Brain. 2019 Oct 1;142(10):3190-3201 [PMID: 31501862]
  17. Neurorehabil Neural Repair. 2019 Sep;33(9):718-729 [PMID: 31315507]
  18. Stroke. 1994 Feb;25(2):318-27 [PMID: 8303738]
  19. J Neurol Sci. 2017 Aug 15;379:241-246 [PMID: 28716250]
  20. Neuroimage. 2019 Nov 1;201:116000 [PMID: 31295567]
  21. J Neurol. 2019 Oct;266(10):2495-2504 [PMID: 31254064]
  22. Analyst. 2010 Feb;135(2):230-67 [PMID: 20098757]
  23. Cereb Cortex. 2014 Mar;24(3):691-706 [PMID: 23162045]
  24. Neurology. 2019 Mar 19;92(12):e1298-e1308 [PMID: 30770431]
  25. Brain. 2006 Feb;129(Pt 2):293-305 [PMID: 16371409]
  26. CNS Neurosci Ther. 2020 May;26(5):576-588 [PMID: 31901155]
  27. J Stroke Cerebrovasc Dis. 2019 Jun;28(6):1597-1603 [PMID: 30940427]
  28. Neuroimage. 2012 Jul 16;61(4):957-65 [PMID: 22440645]
  29. Cerebrovasc Dis. 2017;43(1-2):17-24 [PMID: 27750251]
  30. Hum Brain Mapp. 2009 Apr;30(4):1155-67 [PMID: 18465744]
  31. Cereb Cortex. 2009 Oct;19(10):2331-7 [PMID: 19168667]
  32. Cortex. 2022 Jan;146:216-226 [PMID: 34902680]
  33. Neuropsychologia. 2012 May;50(6):1010-7 [PMID: 21756924]
  34. Aphasiology. 2020;34(3):365-375 [PMID: 32377026]
  35. Mov Disord Clin Pract. 2020 Apr 30;7(6):629-638 [PMID: 32775508]
  36. Arch Neurol. 1991 Mar;48(3):293-8 [PMID: 1705796]
  37. Stroke. 2020 Jul;51(7):2111-2121 [PMID: 32517579]
  38. Neuropsychologia. 2010 Jul;48(9):2758-63 [PMID: 20433859]
  39. Acad Radiol. 2012 Jan;19(1):26-34 [PMID: 22142678]
  40. J Cheminform. 2014 Mar 29;6(1):10 [PMID: 24678909]
  41. Cortex. 2017 Dec;97:327-338 [PMID: 28049565]
  42. Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):E4367-76 [PMID: 27402738]
  43. Cogn Behav Neurol. 2020 Sep;33(3):179-191 [PMID: 32889950]
  44. Stroke. 2005 Jan;36(1):50-5 [PMID: 15576652]
  45. BMJ. 2010 Jul 26;341:c3666 [PMID: 20660506]
  46. Ann Clin Transl Neurol. 2021 Sep;8(9):1917-1934 [PMID: 34310081]
  47. Neurology. 2000 Mar 28;54(6):1277-83 [PMID: 10746598]
  48. Can J Neurol Sci. 2019 Jul;46(4):383-388 [PMID: 31133080]
  49. Neuroimage Clin. 2016 Aug 02;12:372-80 [PMID: 27595065]
  50. Hum Brain Mapp. 2021 Nov;42(16):5409-5422 [PMID: 34415093]
  51. J Am Heart Assoc. 2015 Jun 23;4(6):001140 [PMID: 26104658]
  52. Brain. 2015 Mar;138(Pt 3):746-60 [PMID: 25609686]
  53. Neuroimage Clin. 2015 Jul 17;9:69-74 [PMID: 26413473]
  54. Hum Brain Mapp. 2014 Dec;35(12):5861-76 [PMID: 25044213]
  55. Eur J Neurosci. 2021 Sep;54(6):6202-6213 [PMID: 34331366]
  56. Behav Neurol. 2000;12(4):191-200 [PMID: 11568431]
  57. Neuroimage Clin. 2018 Mar 30;19:22-29 [PMID: 30034998]
  58. Cereb Cortex. 2004 Oct;14(10):1164-72 [PMID: 15142954]
  59. J Am Heart Assoc. 2018 Sep 18;7(18):e009360 [PMID: 30371192]
  60. Sci Rep. 2021 Feb 24;11(1):4478 [PMID: 33627742]
  61. Cerebrovasc Dis. 2014;37(3):223-30 [PMID: 24642789]

Grants

  1. P50 DC014664/NIDCD NIH HHS

MeSH Term

Humans
Aged
White Matter
Magnetic Resonance Imaging
Leukoaraiosis
Stroke
Perceptual Disorders

Word Cloud

Created with Highcharts 10.0.0WMHstrokeseverityacutemattermeasurescomparedneglecthemisphericvoxel-basedtopographicWhitehyperintensitiescognitiveinformationimprovelesionlearningvectorregressionspatialrightpatientsextentpredictingpredictionbiomarkerfrequentlyobservedbrainscanselderlypeopleassociatedincreasedriskdeclinedementiaHoweverunknownyetprovideunderstandingpoststrokeoutcomestate-of-the-artstereotaxicstructuraldataimplementedhigh-dimensionalmachinemodelsbasedsupportpredict103found1additionalbilateralindeedyieldedsignificantimprovementmapalone2Periventricularappearedrelevantdeepsubcortical3AmongdifferentmapsallowedaccuratepredictionsusetraditionalordinallyassessedvisualratingscalesFazekas-scaleCardiovascularHealthStudy-scalesummaryappearvaluableclinicalimagingdeficitsbearsgreatpotentialrehabilitationguidanceRightwhiteImagingLeukoaraiosisMachineSpatialattentionSupportlesions

Similar Articles

Cited By