Going the distance to test local adaptation in Coho salmon.

Rebekah L Horn, Shawn R Narum
Author Information
  1. Rebekah L Horn: Columbia River Inter-Tribal Fish Commission, Hagerman, Idaho, USA. ORCID
  2. Shawn R Narum: Columbia River Inter-Tribal Fish Commission, Hagerman, Idaho, USA. ORCID

Abstract

The mechanisms underlying local adaptation, where populations evolve traits that confer advantages to the local environment, is a central topic for understanding evolution in natural systems. Conservation goals for species at risk often include defining population boundaries by identifying gene diversity, genetic differentiation, and adaptation to local environments. In this issue of Molecular Ecology, Rougemont et al. (2022) combine genome-wide SNP data with an extensive set of landscape variables to study the genomic mechanisms of local adaptation in the entire North American range of Coho salmon (Oncorhynchus kisutch), representing one of the largest studies of its kind. Migration distance, defined as the distance adult Coho salmon migrate from the ocean to their freshwater spawning ground, was found to be the primary factor driving local adaptation in this species. With climatic changes altering flow regimes and therefore the success of Coho salmon to return to spawning grounds, understanding environmental drivers and the genomic basis for migration is essential in the conservation of anadromous salmonids.

References

  1. Hess, J. E., Zendt, J. S., Matala, A. R., & Narum, S. R. (2016). Genetic basis of adult migration timing in anadromous steelhead discovered through multivariate association testing. Proceedings of the Royal Society B: Biological Sciences, 283(1830), 20153064.
  2. Horn, R. L., Kamphaus, C., Murdoch, K., & Narum, S. R. (2020). Detecting genomic variation underlying phenotypic characteristics of reintroduced Coho salmon (Oncorhynchus kisutch). Conservation Genetics, 21, 1011-1021.
  3. Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local adaptation. Ecology Letters, 7, 1225-1241.
  4. Perrier, C., & Charmantier, A. (2018). On the importance of time scales when studying adaptive evolution. Evolution Letters, 3, 240-247.
  5. Prince, D. J., O'Rourke, S. M., Thompson, T. Q., Ali, O. A., Lyman, H. S., Saglam, I. K., & Miller, M. R. (2017). The evolutionary basis of premature migration in Pacific salmons the utility of genomics for informing conservation. Science Advances, 3(8), e1603198.
  6. Rougemont, Q., Moore, J.-S., Leroy, T., Normandeau, E., Rondeau, E. B., Withler, R. E., & Bernatchez, L. (2020). Demographic history shaped geographical patterns of deleterious mutation load in a broadly distributed Pacific salmon. PLoS Genetics, 16(8), e1008348.
  7. Rougemont, Q., Xuereb, A., Dallaire, X., Moore, J.-S., Normandeau, E., Perreault-Payette, A., Bougas, B., Rondeau, E. B., Withler, R. E., Van Doornik, D. M., Crane, P. A., Naish, K. A., Garza, J. C., Beacham, T. D., Koop, B. F., & Bernatchez, L. (2022). Long-distance migration is a major factor driving local adaptation at continental scale in Coho salmon. Molecular Ecology, 32, 542-559.
  8. Therkildsen, N. O., & Palumbi, S. R. (2017). Practical low-coverage genomewide sequencing of hundreds of individually barcoded samples for population and evolutionary genomics in nonmodel species. Molecular Ecology Resources, 17, 194-208.
  9. Waters, C. D., Clemento, A., Aykanat, T., Garza, J. C., Naish, K. A., Narum, S., & Primmer, C. R. (2021). Heterogeneous genetic basis of age at maturity in salmonid fishes. Molecular Ecology, 30, 1435-1456.
  10. Yi, X., Liang, Y., Huerta-Sanchez, E., Jin, X., Cuo, Z. X. P., Pool, J. E., & Wang, J. (2010). Sequencing of 50 human exomes reveals adaption to high altitude. Science, 329, 75-78.

MeSH Term

Animals
Oncorhynchus kisutch
Genome
Adaptation, Physiological
Acclimatization
Fresh Water

Word Cloud

Created with Highcharts 10.0.0localadaptationCohosalmondistancemechanismsunderstandingspeciesgenomicspawningunderlyingpopulationsevolvetraitsconferadvantagesenvironmentcentraltopicevolutionnaturalsystemsConservationgoalsriskoftenincludedefiningpopulationboundariesidentifyinggenediversitygeneticdifferentiationenvironmentsissueMolecularEcologyRougemontetal2022combinegenome-wideSNPdataextensivesetlandscapevariablesstudyentireNorthAmericanrangeOncorhynchuskisutchrepresentingonelargeststudieskindMigrationdefinedadultmigrateoceanfreshwatergroundfoundprimaryfactordrivingclimaticchangesalteringflowregimesthereforesuccessreturngroundsenvironmentaldriversbasismigrationessentialconservationanadromoussalmonidsGoingtest

Similar Articles

Cited By

No available data.