Interneuronal network model of theta-nested fast oscillations predicts differential effects of heterogeneity, gap junctions and short term depression for hyperpolarizing versus shunting inhibition.

Guillem Via, Roman Baravalle, Fernando R Fernandez, John A White, Carmen C Canavier
Author Information
  1. Guillem Via: Louisiana State University Health Sciences Center, Department of Cell Biology and Anatomy, New Orleans, Louisiana, United States of America. ORCID
  2. Roman Baravalle: Louisiana State University Health Sciences Center, Department of Cell Biology and Anatomy, New Orleans, Louisiana, United States of America. ORCID
  3. Fernando R Fernandez: Department of Biomedical Engineering, Center for Systems Neuroscience, Neurophotonics Center, Boston University, Boston, Massachusetts, United States of America.
  4. John A White: Department of Biomedical Engineering, Center for Systems Neuroscience, Neurophotonics Center, Boston University, Boston, Massachusetts, United States of America. ORCID
  5. Carmen C Canavier: Louisiana State University Health Sciences Center, Department of Cell Biology and Anatomy, New Orleans, Louisiana, United States of America. ORCID

Abstract

Theta and gamma oscillations in the hippocampus have been hypothesized to play a role in the encoding and retrieval of memories. Recently, it was shown that an intrinsic fast gamma mechanism in medial entorhinal cortex can be recruited by optogenetic stimulation at theta frequencies, which can persist with fast excitatory synaptic transmission blocked, suggesting a contribution of interneuronal network gamma (ING). We calibrated the passive and active properties of a 100-neuron model network to capture the range of passive properties and frequency/current relationships of experimentally recorded PV+ neurons in the medial entorhinal cortex (mEC). The strength and probabilities of chemical and electrical synapses were also calibrated using paired recordings, as were the kinetics and short-term depression (STD) of the chemical synapses. Gap junctions that contribute a noticeable fraction of the input resistance were required for synchrony with hyperpolarizing inhibition; these networks exhibited theta-nested high frequency oscillations similar to the putative ING observed experimentally in the optogenetically-driven PV-ChR2 mice. With STD included in the model, the network desynchronized at frequencies above ~200 Hz, so for sufficiently strong drive, fast oscillations were only observed before the peak of the theta. Because hyperpolarizing synapses provide a synchronizing drive that contributes to robustness in the presence of heterogeneity, synchronization decreases as the hyperpolarizing inhibition becomes weaker. In contrast, networks with shunting inhibition required non-physiological levels of gap junctions to synchronize using conduction delays within the measured range.

References

  1. J Physiol. 1948 Mar 15;107(2):165-81 [PMID: 16991796]
  2. Neuron. 2008 May 8;58(3):387-400 [PMID: 18466749]
  3. Curr Opin Neurobiol. 2006 Dec;16(6):710-5 [PMID: 17011181]
  4. J Neurosci. 2012 Jan 11;32(2):423-35 [PMID: 22238079]
  5. Front Comput Neurosci. 2013 Oct 22;7:144 [PMID: 24155715]
  6. eNeuro. 2022 Feb 16;9(1): [PMID: 35105656]
  7. J Neurosci. 2015 Nov 25;35(47):15682-95 [PMID: 26609160]
  8. J Comput Neurosci. 2022 May;50(2):251-272 [PMID: 35274227]
  9. J Physiol. 2019 Mar;597(6):1677-1690 [PMID: 30570751]
  10. Neuron. 2009 Mar 26;61(6):820-38 [PMID: 19323993]
  11. PLoS Comput Biol. 2016 Apr 19;12(4):e1004880 [PMID: 27093059]
  12. PLoS Comput Biol. 2007 Aug;3(8):e156 [PMID: 17696606]
  13. J Neurosci. 1996 Oct 15;16(20):6402-13 [PMID: 8815919]
  14. Neuron. 2013 Mar 20;77(6):1002-16 [PMID: 23522038]
  15. Biophys J. 2004 Oct;87(4):2283-98 [PMID: 15454430]
  16. Curr Opin Neurobiol. 2005 Jun;15(3):312-8 [PMID: 15916893]
  17. Physiol Rev. 2010 Jul;90(3):1195-268 [PMID: 20664082]
  18. Philos Trans R Soc Lond B Biol Sci. 2009 May 12;364(1521):1193-201 [PMID: 19528000]
  19. Nat Rev Neurosci. 2007 Jan;8(1):45-56 [PMID: 17180162]
  20. PLoS Comput Biol. 2022 Feb 17;18(2):e1009891 [PMID: 35176028]
  21. Elife. 2014 Nov 06;3: [PMID: 25375253]
  22. PLoS Biol. 2019 Sep 4;17(9):e3000419 [PMID: 31483783]
  23. J Physiol. 2016 Jul 1;594(13):3745-74 [PMID: 27038232]
  24. Neuron. 2006 Jan 5;49(1):107-17 [PMID: 16387643]
  25. J Neurosci. 1995 Oct;15(10):6651-65 [PMID: 7472426]
  26. eNeuro. 2020 May 8;7(3): [PMID: 32198159]
  27. J Comput Neurosci. 1994 Dec;1(4):313-21 [PMID: 8792237]
  28. Epilepsy Curr. 2012 Mar;12(2):66-8 [PMID: 22473546]
  29. Curr Opin Neurobiol. 2010 Apr;20(2):150-5 [PMID: 20303255]
  30. Neural Comput. 2006 Nov;18(11):2617-50 [PMID: 16999573]
  31. Front Neural Circuits. 2016 Oct 20;10:82 [PMID: 27812323]
  32. Front Comput Neurosci. 2020 May 28;14:47 [PMID: 32547379]
  33. Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15482-7 [PMID: 15489269]
  34. Hippocampus. 2022 Apr;32(4):310-331 [PMID: 35171512]
  35. Front Syst Neurosci. 2011 Jan 13;4:162 [PMID: 21283555]
  36. J Neurophysiol. 2004 Oct;92(4):2283-94 [PMID: 15381746]
  37. J Neurosci. 2003 Nov 19;23(33):10503-14 [PMID: 14627634]
  38. eNeuro. 2017 Oct 16;4(5): [PMID: 29085901]
  39. Phys Rev E. 2017 Oct;96(4-1):042311 [PMID: 29347566]
  40. Neuron. 2011 Sep 22;71(6):995-1013 [PMID: 21943598]
  41. J Neurosci. 1995 Jan;15(1 Pt 1):47-60 [PMID: 7823151]
  42. Math Biosci. 2010 Aug;226(2):77-96 [PMID: 20460132]
  43. Physiol Rev. 2017 Oct 1;97(4):1619-1747 [PMID: 28954853]
  44. Science. 2010 Jan 1;327(5961):52-8 [PMID: 19965717]
  45. J Neurosci. 2001 Apr 15;21(8):2687-98 [PMID: 11306622]
  46. J Neurophysiol. 2005 Dec;94(6):4344-61 [PMID: 16093332]
  47. iScience. 2018 Nov 30;9:120-137 [PMID: 30390433]
  48. Trends Neurosci. 2007 Jul;30(7):343-9 [PMID: 17532059]
  49. J Neurophysiol. 1999 Nov;82(5):2476-89 [PMID: 10561420]
  50. J Comput Neurosci. 1998 Mar;5(1):5-16 [PMID: 9580271]
  51. Neural Comput. 2006 May;18(5):1066-110 [PMID: 16595058]
  52. PLoS Comput Biol. 2020 Dec 15;16(12):e1008533 [PMID: 33320855]
  53. J Neurosci. 2016 Apr 13;36(15):4155-69 [PMID: 27076416]
  54. J Theor Biol. 1967 Jul;16(1):15-42 [PMID: 6035757]
  55. Cell Rep. 2022 Jun 14;39(11):110948 [PMID: 35705055]
  56. J Neurophysiol. 2019 Apr 1;121(4):1125-1142 [PMID: 30726155]
  57. J Neurophysiol. 2011 Dec;106(6):2936-49 [PMID: 21880937]
  58. Neuroscience. 2018 Jan 1;368:115-131 [PMID: 28756117]
  59. J Physiol Paris. 1996;90(3-4):229-32 [PMID: 9116673]
  60. Neuron. 2013 Jan 9;77(1):141-54 [PMID: 23312522]
  61. Nat Neurosci. 2012 Sep;15(9):1265-71 [PMID: 22864613]
  62. Nature. 2003 Feb 20;421(6925):844-8 [PMID: 12594513]
  63. J Neurosci. 1996 May 1;16(9):3056-66 [PMID: 8622135]
  64. Neural Comput. 2003 Mar;15(3):509-38 [PMID: 12620157]
  65. J Neurosci. 2022 Mar 2;42(9):1752-1764 [PMID: 34996815]
  66. Neuron. 2017 Sep 27;96(1):217-227.e4 [PMID: 28957670]
  67. J Physiol. 1995 Nov 1;488 ( Pt 3):661-72 [PMID: 8576856]
  68. Neural Comput. 1999 Oct 1;11(7):1621-71 [PMID: 10490941]
  69. J Comput Neurosci. 2003 Jul-Aug;15(1):71-90 [PMID: 12843696]
  70. J Comput Neurosci. 2011 Oct;31(2):401-18 [PMID: 21344300]
  71. J Neurosci. 2007 Dec 5;27(49):13552-66 [PMID: 18057213]
  72. Curr Opin Neurobiol. 2010 Apr;20(2):143-9 [PMID: 20181475]
  73. Neuron. 2016 Mar 16;89(6):1157-1172 [PMID: 26985723]
  74. J Neurosci. 2005 Sep 7;25(36):8272-81 [PMID: 16148235]
  75. Neural Netw. 2001 Jul-Sep;14(6-7):883-94 [PMID: 11665779]
  76. Nature. 2009 Nov 19;462(7271):353-7 [PMID: 19924214]
  77. PLoS Comput Biol. 2019 May 9;15(5):e1007019 [PMID: 31071085]
  78. J Physiol. 2004 Sep 1;559(Pt 2):347-53 [PMID: 15254156]
  79. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):E2726-34 [PMID: 23010933]
  80. J Physiol. 1952 Aug;117(4):500-44 [PMID: 12991237]
  81. Biol Cybern. 1999 Jan;80(1):11-23 [PMID: 20809292]
  82. Cereb Cortex. 2017 Apr 1;27(4):2435-2452 [PMID: 28334142]
  83. Elife. 2019 Aug 20;8: [PMID: 31429824]
  84. J Neurosci. 2009 Apr 22;29(16):5218-33 [PMID: 19386918]
  85. Neuron. 2004 Feb 19;41(4):495-511 [PMID: 14980200]
  86. Eur J Neurosci. 2018 Oct;48(8):2795-2806 [PMID: 29356162]

Grants

  1. R01 MH085387/NIMH NIH HHS
  2. R01 NS054281/NINDS NIH HHS

MeSH Term

Animals
Mice
Gap Junctions
Hippocampus
Interneurons
Synaptic Transmission

Word Cloud

Created with Highcharts 10.0.0oscillationsfastnetworkhyperpolarizinginhibitiongammamodelsynapsesjunctionsmedialentorhinalcortexcanthetafrequenciesINGcalibratedpassivepropertiesrangeexperimentallychemicalusingdepressionSTDrequirednetworkstheta-nestedobserveddriveheterogeneityshuntinggapThetahippocampushypothesizedplayroleencodingretrievalmemoriesRecentlyshownintrinsicmechanismrecruitedoptogeneticstimulationpersistexcitatorysynaptictransmissionblockedsuggestingcontributioninterneuronalactive100-neuroncapturefrequency/currentrelationshipsrecordedPV+neuronsmECstrengthprobabilitieselectricalalsopairedrecordingskineticsshort-termGapcontributenoticeablefractioninputresistancesynchronyexhibitedhighfrequencysimilarputativeoptogenetically-drivenPV-ChR2miceincludeddesynchronized~200Hzsufficientlystrongpeakprovidesynchronizingcontributesrobustnesspresencesynchronizationdecreasesbecomesweakercontrastnon-physiologicallevelssynchronizeconductiondelayswithinmeasuredInterneuronalpredictsdifferentialeffectsshorttermversus

Similar Articles

Cited By