Comparative transcriptomes of nine tissues for the Heilongjiang brown frog (Rana amurensis).

Wanyu Li, Yue Lan, Lei Wang, Lewei He, Ruixiang Tang, Megan Price, Bisong Yue, Zhenxin Fan
Author Information
  1. Wanyu Li: Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China.
  2. Yue Lan: Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China.
  3. Lei Wang: Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China.
  4. Lewei He: Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China.
  5. Ruixiang Tang: Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China.
  6. Megan Price: Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China.
  7. Bisong Yue: Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China. bsyue@scu.edu.cn.
  8. Zhenxin Fan: Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China. zxfan@scu.edu.cn.

Abstract

The Heilongjiang brown frog (Rana amurensis) is widely used in traditional Chinese medicine. In particular, the oviduct and skin have been developed into various health products. However, limited numbers of complete genomes of amphibian species have been reported, excluding the Heilongjiang brown frog. Here, the transcriptomes of 45 samples from the liver, spleen, heart, ovaries, thigh muscles, skin, oviduct, stomach and intestine of five Heilongjiang brown frog were reassembled and analyzed. A total of 1,085,532 unigenes with an average length of 676.6 bp and N50 of 722 bp were obtained. Comparative transcriptomics of different tissues detected tissue-specific expression. There were 3248 differentially expressed genes (DEGs) in the ovary, and the number of unique DEGs between the ovary and spleen was the largest. The results of DEGs enrichment showed there were many pathways and items related to protein synthesis and metabolism in the oviduct. The DEGs of the skin were enriched with many bacterial defense items, indicating that there were a large number of antimicrobial peptides in the skin. Thus, these were suitable as biological sources for the development and extraction of antimicrobial peptides. Through the assembly of transcriptome sequencing data and functional annotation of the Heilongjiang brown frog genome, this study provides reference materials for further exploring and utilizing functional gene resources of frogs and lays a foundation for medical research and the development of new products.

References

  1. Biochem J. 2000 Dec 1;352 Pt 2:449-63 [PMID: 11085939]
  2. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  3. J Invest Dermatol. 2013 May;133(5):1161-9 [PMID: 23407391]
  4. Methods. 2009 Jul;48(3):249-57 [PMID: 19336255]
  5. Curr Biol. 2018 Nov 5;28(21):R1237-R1241 [PMID: 30399342]
  6. Ann Clin Transl Neurol. 2019 Mar 07;6(4):807-811 [PMID: 31020005]
  7. Nat Commun. 2017 Nov 10;8(1):1433 [PMID: 29127278]
  8. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  9. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  10. PLoS One. 2015 Apr 13;10(4):e0123730 [PMID: 25874626]
  11. Appl Microbiol Biotechnol. 2017 Jul;101(14):5799-5808 [PMID: 28647779]
  12. Genome Biol. 2004;5(2):R7 [PMID: 14759257]
  13. Bioinformatics. 2012 Dec 1;28(23):3150-2 [PMID: 23060610]
  14. Eur J Histochem. 2014 Sep 09;58(3):2422 [PMID: 25308849]
  15. Mol Cell Proteomics. 2014 Feb;13(2):397-406 [PMID: 24309898]
  16. Genome Biol Evol. 2012;4(2):168-83 [PMID: 22200636]
  17. J Genet Genomics. 2013 Mar 20;40(3):137-40 [PMID: 23522386]
  18. Molecules. 2017 Dec 13;22(12): [PMID: 29236056]
  19. Dev Comp Immunol. 2020 Feb;103:103471 [PMID: 31634521]
  20. Eur J Biochem. 1999 Dec;266(2):370-82 [PMID: 10561577]
  21. Nucleic Acids Res. 2007 Jan;35(Database issue):D61-5 [PMID: 17130148]
  22. J Biol Chem. 1999 May 21;274(21):14926-35 [PMID: 10329693]
  23. Clin Nutr. 2011 Oct;30(5):571-7 [PMID: 21636183]
  24. PLoS One. 2012;7(2):e30619 [PMID: 22312429]
  25. Bioessays. 2007 Feb;29(2):166-77 [PMID: 17226804]
  26. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W293-7 [PMID: 16845012]
  27. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  28. Mol Ecol Resour. 2021 May;21(4):1256-1273 [PMID: 33426774]
  29. J Endocrinol. 2014 Jun;221(3):R145-61 [PMID: 24741072]
  30. Nucleic Acids Res. 2008 Jun;36(10):3420-35 [PMID: 18445632]
  31. Biochem Biophys Res Commun. 1989 Oct 16;164(1):439-45 [PMID: 2803312]
  32. Syst Biol. 2016 Sep;65(5):824-42 [PMID: 27288482]
  33. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  34. Molecules. 2018 Nov 23;23(12): [PMID: 30477085]
  35. Nat Rev Gastroenterol Hepatol. 2013 Jun;10(6):352-61 [PMID: 23478383]
  36. Methods Mol Biol. 2019;1962:227-245 [PMID: 31020564]
  37. Pharmaceuticals (Basel). 2014 Jan 15;7(1):58-77 [PMID: 24434793]
  38. Nucleic Acids Res. 2003 Jan 1;31(1):365-70 [PMID: 12520024]
  39. Dev Genes Evol. 2019 Nov;229(5-6):197-206 [PMID: 31734771]
  40. Science. 2009 Nov 27;326(5957):1216-9 [PMID: 19965464]
  41. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  42. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  43. Nat Methods. 2017 Apr;14(4):417-419 [PMID: 28263959]
  44. DNA Cell Biol. 2007 Apr;26(4):219-25 [PMID: 17465888]
  45. Peptides. 2006 Nov;27(11):2688-94 [PMID: 16790295]
  46. Int J Mol Sci. 2019 Mar 27;20(7): [PMID: 30934682]
  47. Mol Biol Evol. 2016 Aug;33(8):1921-36 [PMID: 27189557]
  48. Biochimie. 2003 Jan-Feb;85(1-2):53-64 [PMID: 12765775]

MeSH Term

Female
Animals
Humans
Transcriptome
Ranidae
Anura
Oviducts
Fallopian Tubes

Word Cloud

Created with Highcharts 10.0.0HeilongjiangbrownfrogskinDEGsoviductRanaamurensisproductstranscriptomesspleenComparativetissuesovarynumbermanyitemsantimicrobialpeptidesdevelopmentfunctionalwidelyusedtraditionalChinesemedicineparticulardevelopedvarioushealthHoweverlimitednumberscompletegenomesamphibianspeciesreportedexcluding45samplesliverheartovariesthighmusclesstomachintestinefivereassembledanalyzedtotal1085532unigenesaveragelength6766 bpN50722 bpobtainedtranscriptomicsdifferentdetectedtissue-specificexpression3248differentiallyexpressedgenesuniquelargestresultsenrichmentshowedpathwaysrelatedproteinsynthesismetabolismenrichedbacterialdefenseindicatinglargeThussuitablebiologicalsourcesextractionassemblytranscriptomesequencingdataannotationgenomestudyprovidesreferencematerialsexploringutilizinggeneresourcesfrogslaysfoundationmedicalresearchnewnine

Similar Articles

Cited By