Unsupervised real-world knowledge extraction via disentangled variational autoencoders for photon diagnostics.

Gregor Hartmann, Gesa Goetzke, Stefan Düsterer, Peter Feuer-Forson, Fabiano Lever, David Meier, Felix Möller, Luis Vera Ramirez, Markus Guehr, Kai Tiedtke, Jens Viefhaus, Markus Braune
Author Information
  1. Gregor Hartmann: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489, Berlin, Germany. gregor.hartmann@helmholtz-berlin.de.
  2. Gesa Goetzke: Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany.
  3. Stefan Düsterer: Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany.
  4. Peter Feuer-Forson: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489, Berlin, Germany.
  5. Fabiano Lever: Institut für Physik und Astronomie, University of Potsdam, Karl-Liebknecht-Strasse 24/25, 14476, Potsdam-Golm, Germany.
  6. David Meier: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489, Berlin, Germany.
  7. Felix Möller: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489, Berlin, Germany.
  8. Luis Vera Ramirez: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489, Berlin, Germany.
  9. Markus Guehr: Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany.
  10. Kai Tiedtke: Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany.
  11. Jens Viefhaus: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489, Berlin, Germany.
  12. Markus Braune: Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany.

Abstract

We present real-world data processing on measured electron time-of-flight data via neural networks. Specifically, the use of disentangled variational autoencoders on data from a diagnostic instrument for online wavelength monitoring at the free electron laser FLASH in Hamburg. Without a-priori knowledge the network is able to find representations of single-shot FEL spectra, which have a low signal-to-noise ratio. This reveals, in a directly human-interpretable way, crucial information about the photon properties. The central photon energy and the intensity as well as very detector-specific features are identified. The network is also capable of data cleaning, i.e. denoising, as well as the removal of artefacts. In the reconstruction, this allows for identification of signatures with very low intensity which are hardly recognisable in the raw data. In this particular case, the network enhances the quality of the diagnostic analysis at FLASH. However, this unsupervised method also has the potential to improve the analysis of other similar types of spectroscopy data.

References

  1. J Synchrotron Radiat. 2016 Jan;23(1):10-20 [PMID: 26698040]
  2. J Synchrotron Radiat. 2018 Jan 01;25(Pt 1):3-15 [PMID: 29271744]
  3. J Synchrotron Radiat. 2019 Jul 1;26(Pt 4):1092-1100 [PMID: 31274432]
  4. J Synchrotron Radiat. 2021 Sep 1;28(Pt 5):1364-1376 [PMID: 34475285]

MeSH Term

Humans
Photons
Knowledge
Electrons
Light
Artifacts

Word Cloud

Created with Highcharts 10.0.0datanetworkphotonreal-worldelectronviadisentangledvariationalautoencodersdiagnosticFLASHknowledgelowintensitywellalsoanalysispresentprocessingmeasuredtime-of-flightneuralnetworksSpecificallyuseinstrumentonlinewavelengthmonitoringfreelaserHamburgWithouta-prioriablefindrepresentationssingle-shotFELspectrasignal-to-noiseratiorevealsdirectlyhuman-interpretablewaycrucialinformationpropertiescentralenergydetector-specificfeaturesidentifiedcapablecleaningiedenoisingremovalartefactsreconstructionallowsidentificationsignatureshardlyrecognisablerawparticularcaseenhancesqualityHoweverunsupervisedmethodpotentialimprovesimilartypesspectroscopyUnsupervisedextractiondiagnostics

Similar Articles

Cited By (1)