The successional trajectory of bacterial and fungal communities in soil are fabricated by yaks' excrement contamination in plateau, China.
Zhenda Shang, Yaping Wang, Miao An, Xiushuang Chen, Muhammad Fakhar-E-Alam Kulyar, Zhankun Tan, Suozhu Liu, Kun Li
Author Information
Zhenda Shang: College of Animal Science, Tibet Agricultural & Animal Husbandry University, Nyingchi, China.
Yaping Wang: College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
Miao An: College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
Xiushuang Chen: Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
Muhammad Fakhar-E-Alam Kulyar: College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
Zhankun Tan: College of Animal Science, Tibet Agricultural & Animal Husbandry University, Nyingchi, China.
Suozhu Liu: College of Animal Science, Tibet Agricultural & Animal Husbandry University, Nyingchi, China.
Kun Li: Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
中文译文
English
The soil microbiome is crucial in determining contemporary realistic conditions for future terrestrial ecological and evolutionary development. However, the precise mechanism between the fecal deposition in livestock grazing and changes in the soil microbiome remains unknown. This is the first in-depth study of bacterial and fungal taxonomic changes of excrement contaminated soils in the plateau (>3,500 m). This suggests the functional shifts towards a harmful-dominated soil microbiome. According to our findings, excrement contamination significantly reduced the soil bacterial and fungal diversity and richness. Furthermore, a continuous decrease in the relative abundance of microorganisms was associated with nutrient cycling, soil pollution purification, and root-soil stability with the increasing degree of excrement contamination. In comparison, soil pathogens were found to have the opposite trend in the scenario, further deteriorating normal soil function and system resilience. Such colonization and succession of the microbiome might provide an important potential theoretical instruction for microbiome-based soil health protection measures in the plateau of China.
PLoS One. 2015 Jan 28;10(1):e0117026
[PMID: 25629158 ]
Microbiol Res. 2015 Dec;181:33-42
[PMID: 26640050 ]
Microorganisms. 2021 Jun 25;9(7):
[PMID: 34202337 ]
Sci Total Environ. 2017 Nov 15;598:121-128
[PMID: 28437768 ]
FEMS Microbiol Rev. 2014 Jan;38(1):1-40
[PMID: 23815638 ]
Environ Sci Pollut Res Int. 2019 Nov;26(33):34521-34530
[PMID: 31643014 ]
Mol Plant Pathol. 2012 May;13(4):414-30
[PMID: 22471698 ]
Nat Commun. 2016 Jan 28;7:10541
[PMID: 26817514 ]
Science. 2006 Jun 2;312(5778):1355-9
[PMID: 16741115 ]
Ecology. 2007 Jun;88(6):1354-64
[PMID: 17601128 ]
Trends Ecol Evol. 2011 Jul;26(7):340-8
[PMID: 21561679 ]
Environ Toxicol Chem. 2008 Mar;27(3):591-8
[PMID: 17944550 ]
New Microbes New Infect. 2016 Apr 13;12:6-7
[PMID: 27200178 ]
J Fungi (Basel). 2021 Jul 14;7(7):
[PMID: 34356938 ]
Microb Cell Fact. 2019 Jun 19;18(1):112
[PMID: 31217027 ]
J Glob Antimicrob Resist. 2018 Jun;13:49-52
[PMID: 29129778 ]
Front Microbiol. 2016 Nov 02;7:1727
[PMID: 27853453 ]
Sci Total Environ. 2019 Apr 20;662:779-785
[PMID: 30708293 ]
ISME J. 2015 Oct;9(10):2178-90
[PMID: 25822483 ]
Nat Commun. 2015 Sep 02;6:8159
[PMID: 26328906 ]
Acta Chir Belg. 2020 Dec;120(6):425-428
[PMID: 31203733 ]
Sci Total Environ. 2020 Jul 20;727:138197
[PMID: 32498200 ]
Microbiol Spectr. 2019 May;7(3):
[PMID: 31215504 ]
Ecotoxicol Environ Saf. 2020 Apr 1;192:110299
[PMID: 32058165 ]
Environ Pollut. 2019 Aug;251:555-563
[PMID: 31108288 ]
Nature. 2012 Jun 06;486(7401):59-67
[PMID: 22678280 ]
Trends Ecol Evol. 2010 Nov;25(11):670-9
[PMID: 20888063 ]
Antonie Van Leeuwenhoek. 2010 Aug;98(2):143-50
[PMID: 20390355 ]
Appl Environ Microbiol. 2000 Mar;66(3):877-83
[PMID: 10698745 ]
ISME J. 2009 Sep;3(9):1004-11
[PMID: 19440233 ]
J Clin Microbiol. 2015 Feb;53(2):626-35
[PMID: 25520446 ]
PLoS One. 2015 Jun 03;10(6):e0127499
[PMID: 26039074 ]
Science. 2016 Jun 17;352(6292):1392-3
[PMID: 27313024 ]
Agric Ecosyst Environ. 2018 Feb 1;253:62-81
[PMID: 29398743 ]
Environ Sci Technol. 2015 Jan 20;49(2):750-9
[PMID: 25514502 ]
Front Microbiol. 2020 Oct 22;11:561381
[PMID: 33193147 ]
Curr Opin Environ Sustain. 2012 Feb;4(1):101-105
[PMID: 25104977 ]
J Hazard Mater. 2021 Jan 15;402:123454
[PMID: 32683159 ]
Nature. 2014 Nov 27;515(7528):505-11
[PMID: 25428498 ]
Stud Mycol. 2020 Feb 01;96:141-153
[PMID: 32206138 ]
Vet Res. 2015 Nov 25;46:137
[PMID: 26607488 ]
Front Microbiol. 2018 Dec 04;9:2987
[PMID: 30564222 ]
Sci Rep. 2015 Oct 07;5:14682
[PMID: 26443005 ]
Environ Sci Pollut Res Int. 2018 Dec;25(36):36693-36701
[PMID: 30377969 ]
Mol Ecol. 2015 Mar;24(5):1091-108
[PMID: 25533315 ]
Dig Dis Sci. 2020 Jan;65(1):141-149
[PMID: 31643033 ]
Crit Rev Microbiol. 2019 Sep - Nov;45(5-6):743-753
[PMID: 31833440 ]
Science. 2010 Jun 11;328(5984):1388-91
[PMID: 20508088 ]
Acta Trop. 2018 Jun;182:14-26
[PMID: 29454733 ]
Environ Pollut. 2020 Dec;267:115636
[PMID: 33254605 ]
Crit Rev Microbiol. 2018 Nov;44(6):759-778
[PMID: 30369284 ]
Environ Sci Pollut Res Int. 2017 Apr;24(11):10056-10067
[PMID: 28108925 ]
J Appl Microbiol. 2019 Feb;126(2):667-683
[PMID: 30269410 ]
Sci Rep. 2016 Nov 02;6:36067
[PMID: 27805014 ]
FEMS Microbiol Rev. 2005 Sep;29(4):795-811
[PMID: 16102603 ]
PLoS One. 2020 Aug 7;15(8):e0236638
[PMID: 32764754 ]
Curr Opin Chem Biol. 2016 Apr;31:40-9
[PMID: 26812494 ]
Q Rev Biol. 2010 Jun;85(2):183-206
[PMID: 20565040 ]
Mar Pollut Bull. 2001 Apr;42(4):286-93
[PMID: 11381749 ]
Methods Mol Biol. 2017;1542:13-32
[PMID: 27924529 ]
Sci Total Environ. 2014 Dec 1;500-501:314-24
[PMID: 25237788 ]