Semiparametric regression modeling of the global percentile outcome.

Xiangyu Liu, Jing Ning, Xuming He, Barbara C Tilley, Ruosha Li
Author Information
  1. Xiangyu Liu: Department of Biometrics, Gilead Sciences, Seattle, WA, United States of America.
  2. Jing Ning: Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
  3. Xuming He: Department of Statistics, University of Michigan, Ann Arbor, MI, United States of America.
  4. Barbara C Tilley: Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, TX, United States of America.
  5. Ruosha Li: Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, TX, United States of America.

Abstract

When no single outcome is sufficient to capture the multidimensional impairments of a disease, investigators often rely on multiple outcomes for comprehensive assessment of global disease status. Methods for assessing covariate effects on global disease status include the composite outcome and global test procedures. One global test procedure is the O'Brien's rank-sum test, which combines information from multiple outcomes using a global rank-sum score. However, existing methods for the global rank-sum do not lend themselves to regression modeling. We consider sensible regression strategies for the global percentile outcome (GPO), under the transformed linear model and the monotonic index model. Posing minimal assumptions, we develop estimation and inference procedures that account for the special features of the GPO. Asymptotics are established using U-statistic and U-process techniques. We illustrate the practical utilities of the proposed methods via extensive simulations and application to a Parkinson's disease study.

Keywords

References

  1. Circ Heart Fail. 2010 Sep;3(5):643-6 [PMID: 20841546]
  2. JAMA. 2015 Feb 10;313(6):584-93 [PMID: 25668262]
  3. J Parkinsons Dis. 2015;5(4):773-82 [PMID: 26639661]
  4. Mov Disord. 2012 Oct;27(12):1513-21 [PMID: 23079770]
  5. Stroke. 1996 Nov;27(11):2136-42 [PMID: 8898828]
  6. Stat Methods Med Res. 2016 Apr;25(2):821-37 [PMID: 23242384]
  7. J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1565-1582 [PMID: 29358898]
  8. Biometrics. 2016 Sep;72(3):926-35 [PMID: 26812695]
  9. JAMA Neurol. 2015 Aug;72(8):863-73 [PMID: 26076039]
  10. Alzheimers Dement (Amst). 2015 Dec 12;2:19-26 [PMID: 27239532]
  11. Biometrics. 1984 Dec;40(4):1079-87 [PMID: 6534410]
  12. Biometrics. 2005 Jun;61(2):532-9 [PMID: 16011701]
  13. Biometrics. 1987 Sep;43(3):487-98 [PMID: 3663814]
  14. Mov Disord Clin Pract. 2016 Nov 17;4(3):416-423 [PMID: 30363371]
  15. Lancet Neurol. 2015 Aug;14(8):795-803 [PMID: 26116315]

Grants

  1. R01 CA269696/NCI NIH HHS
  2. R01 DK117209/NIDDK NIH HHS
  3. R03 NS108136/NINDS NIH HHS
  4. U24 CA230144/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0globaloutcomediseasemodeltestrank-sumregressionpercentilemultipleoutcomesstatusproceduresusingmethodsmodelingGPOlinearindexsinglesufficientcapturemultidimensionalimpairmentsinvestigatorsoftenrelycomprehensiveassessmentMethodsassessingcovariateeffectsincludecompositeOneprocedureO'Brien'scombinesinformationscoreHoweverexistinglendconsidersensiblestrategiestransformedmonotonicPosingminimalassumptionsdevelopestimationinferenceaccountspecialfeaturesAsymptoticsestablishedU-statisticU-processtechniquesillustratepracticalutilitiesproposedviaextensivesimulationsapplicationParkinson'sstudySemiparametricGlobalMonotonicNon-smoothobjectivefunctionRank-sumTransformed

Similar Articles

Cited By