Optimizing genomic selection in soybean: An important improvement in agricultural genomics.

Mohsen Yoosefzadeh-Najafabadi, Istvan Rajcan, Milad Eskandari
Author Information
  1. Mohsen Yoosefzadeh-Najafabadi: Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.
  2. Istvan Rajcan: Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.
  3. Milad Eskandari: Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.

Abstract

Fast-paced yield improvement in strategic crops such as soybean is pivotal for achieving sustainable global food security. Precise genomic selection (GS), as one of the most effective genomic tools for recognizing superior genotypes, can accelerate the efficiency of breeding programs through shortening the breeding cycle, resulting in significant increases in annual yield improvement. In this study, we investigated the possible use of haplotype-based GS to increase the prediction accuracy of soybean yield and its component traits through augmenting the models by using sophisticated machine learning algorithms and optimized genetic information. The results demonstrated up to a 7% increase in the prediction accuracy when using haplotype-based GS over the full single nucleotide polymorphisms-based GS methods. In addition, we discover an auspicious haplotype block on chromosome 19 with significant impacts on yield and its components, which can be used for screening climate-resilient soybean genotypes with improved yield in large breeding populations.

Keywords

References

  1. Front Plant Sci. 2021 Jan 12;11:624273 [PMID: 33510761]
  2. Plant Physiol. 2013 Mar;161(3):1458-75 [PMID: 23314943]
  3. Genome Res. 2001 Oct;11(10):1716-24 [PMID: 11591648]
  4. Plant Genome. 2021 Nov;14(3):e20119 [PMID: 34482627]
  5. Genet Sel Evol. 2014 Jun 04;46:35 [PMID: 24898131]
  6. PLoS One. 2013;8(1):e54603 [PMID: 23372741]
  7. Annu Rev Plant Biol. 2003;54:691-722 [PMID: 14503008]
  8. Biol Trace Elem Res. 2013 Jan;151(1):105-12 [PMID: 23090712]
  9. PLoS Comput Biol. 2020 Feb 14;16(2):e1007663 [PMID: 32059004]
  10. Nat Food. 2021 Oct;2(10):819-827 [PMID: 37117978]
  11. BMC Genomics. 2021 Jan 06;22(1):19 [PMID: 33407114]
  12. Front Plant Sci. 2021 Nov 22;12:777028 [PMID: 34880894]
  13. Int J Mol Sci. 2022 May 16;23(10): [PMID: 35628351]
  14. J Exp Bot. 2002 Apr;53(370):959-70 [PMID: 11912238]
  15. Water Sci Technol. 2018 Dec;78(10):2064-2076 [PMID: 30629534]
  16. Nat Commun. 2012;3:1293 [PMID: 23250423]
  17. J Anim Breed Genet. 2007 Dec;124(6):323-30 [PMID: 18076469]
  18. Plant Sci. 2019 Jun;283:157-164 [PMID: 31128685]
  19. PLoS One. 2021 Apr 30;16(4):e0250665 [PMID: 33930039]
  20. PLoS One. 2017 Feb 2;12(2):e0171105 [PMID: 28152092]
  21. Genet Epidemiol. 2009;33 Suppl 1:S51-7 [PMID: 19924717]
  22. G3 (Bethesda). 2020 Feb 6;10(2):665-675 [PMID: 31818873]
  23. Appl Microbiol Biotechnol. 2020 Nov;104(22):9449-9485 [PMID: 32984921]
  24. Nat Food. 2021 Jun;2(6):426-433 [PMID: 37118228]
  25. Commun Biol. 2021 Nov 4;4(1):1266 [PMID: 34737387]
  26. Molecules. 2021 Apr 03;26(7): [PMID: 33916717]
  27. Genome. 2020 Nov;63(11):577-581 [PMID: 33006480]
  28. Nat Genet. 2021 Feb;53(2):243-253 [PMID: 33526925]
  29. Nat Biotechnol. 2006 Dec;24(12):1565-7 [PMID: 17160063]
  30. Plant Cell Environ. 2010 Sep;33(9):1529-42 [PMID: 20444215]
  31. BMC Plant Biol. 2017 Jun 29;17(1):110 [PMID: 28662679]
  32. Bioinformatics. 2005 Jan 15;21(2):263-5 [PMID: 15297300]
  33. Brief Funct Genomics. 2010 Mar;9(2):166-77 [PMID: 20156985]
  34. Environ Sci Pollut Res Int. 2013 Dec;20(12):8484-90 [PMID: 23649602]
  35. PLoS Genet. 2015 Nov 05;11(11):e1005621 [PMID: 26539986]
  36. Plant Direct. 2021 Jan 25;5(1):e00298 [PMID: 33532690]
  37. PLoS One. 2013 Jun 19;8(6):e66428 [PMID: 23840465]
  38. Redox Rep. 2014 Nov;19(6):242-50 [PMID: 25156196]
  39. Front Vet Sci. 2022 Sep 30;9:991844 [PMID: 36254260]
  40. Trends Plant Sci. 2005 Dec;10(12):621-30 [PMID: 16290213]

Word Cloud

Created with Highcharts 10.0.0yieldGSbreedingimprovementsoybeangenomicsecurityselectiongenotypescansignificanthaplotype-basedincreasepredictionaccuracyusinglearningalgorithmsblockSoybeanFast-pacedstrategiccropspivotalachievingsustainableglobalfoodPreciseoneeffectivetoolsrecognizingsuperioraccelerateefficiencyprogramsshorteningcycleresultingincreasesannualstudyinvestigatedpossibleusecomponenttraitsaugmentingmodelssophisticatedmachineoptimizedgeneticinformationresultsdemonstrated7%fullsinglenucleotidepolymorphisms-basedmethodsadditiondiscoverauspicioushaplotypechromosome19impactscomponentsusedscreeningclimate-resilientimprovedlargepopulationsOptimizingsoybean:importantagriculturalgenomicsFoodHaplotypeMachine

Similar Articles

Cited By