Chitosan nanoparticles (ChNPs): A versatile growth promoter in modern agricultural production.

Pramod U Ingle, Sudhir S Shende, Prashant R Shingote, Suchitra S Mishra, Vaidehi Sarda, Dhiraj L Wasule, Vishnu D Rajput, Tatiana Minkina, Mahendra Rai, Svetlana Sushkova, Saglara Mandzhieva, Aniket Gade
Author Information
  1. Pramod U Ingle: Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, Maharashtra 444602, India.
  2. Sudhir S Shende: Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, Maharashtra 444602, India.
  3. Prashant R Shingote: Vasantrao Naik College of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola 445001, India.
  4. Suchitra S Mishra: University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Mahatma Jyotiba Fuley Shaikshanik Parisar, Amravati Road, Nagpur, Maharashtra 440033, India.
  5. Vaidehi Sarda: Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, Maharashtra 444602, India.
  6. Dhiraj L Wasule: Vasantrao Naik College of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola 445001, India.
  7. Vishnu D Rajput: Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia.
  8. Tatiana Minkina: Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia.
  9. Mahendra Rai: Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, Maharashtra 444602, India.
  10. Svetlana Sushkova: Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia.
  11. Saglara Mandzhieva: Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia.
  12. Aniket Gade: Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, Maharashtra 444602, India.

Abstract

Agriculture is a backbone of global economy and most of the population relies on this sector for their livelihood. Chitosan as a biodegradable material thus can be explored for in various fields in its nano form to replace non-biodegradable and toxic compounds. The chitosan has appealing properties like biocompatibility, non-toxicity, biodegradability, and low allergenic, making it useful in several applications including in agriculture sector. Because of their unique properties, chitosan nanoparticles (ChNPs) are extensively applied as a bioagent in various biological and biomedical processes, including wastewater treatment, plant growth promoter, fungicidal agent, wound healing, and scaffold for tissue engineering. Furthermore, the biocompatibility of chitosan nanoparticles (ChNPs) is reported to have other biological properties such as anti-cancerous, antifungal, antioxidant activities, even induces an immune response in the plant, and helps manage biotic and abiotic stresses. Chitosan can also find its application in wastewater treatment, hydrating agents in cosmetics, the food industry, paper, and the textile industry as adhesive, drug-delivering agent in medical as well as for bioimaging. Since chitosan has low toxicity, the nano-formulation of chitosan can be used for the controlled release of fertilizers, pesticides, and plant growth promoters in agriculture fields. The ChNPs applications in precision farming being a novel approach in recent developments. Here we have comprehensively reviewed the major points in this review are; the synthesis of ChNPs by biological resources, their modification and formulation for increasing its applicability, their modified types, and the different agricultural applications of ChNPs.

Keywords

References

  1. Biotechnol Rep (Amst). 2017 May 24;15:11-23 [PMID: 28603692]
  2. Sci Rep. 2015 Sep 08;5:13809 [PMID: 26346969]
  3. Carbohydr Polym. 2019 May 15;212:169-177 [PMID: 30832844]
  4. Polymers (Basel). 2022 Jun 04;14(11): [PMID: 35683959]
  5. Nanotechnol Sci Appl. 2014 Aug 04;7:63-71 [PMID: 25187699]
  6. Carbohydr Polym. 2019 Mar 15;208:59-69 [PMID: 30658832]
  7. J Nanobiotechnology. 2019 Sep 21;17(1):100 [PMID: 31542052]
  8. 3 Biotech. 2017 Oct;7(5):279 [PMID: 28794934]
  9. Int J Biol Macromol. 2015 Nov;81:49-59 [PMID: 26210037]
  10. Biotechnol Adv. 2011 Nov-Dec;29(6):792-803 [PMID: 21729746]
  11. Int J Biol Macromol. 2017 Sep;102:526-538 [PMID: 28414109]
  12. Environ Sci Pollut Res Int. 2015 Feb;22(4):2935-44 [PMID: 25226839]
  13. Int J Food Microbiol. 2010 Nov 15;144(1):51-63 [PMID: 20951455]
  14. Int J Biol Macromol. 2015 Nov;81:631-7 [PMID: 26321424]
  15. Molecules. 2020 Apr 01;25(7): [PMID: 32244664]
  16. Sci Rep. 2018 Feb 6;8(1):2485 [PMID: 29410438]
  17. Sci Rep. 2015 Oct 16;5:15195 [PMID: 26471771]
  18. Carbohydr Polym. 2019 Apr 15;210:289-301 [PMID: 30732765]
  19. Carbohydr Polym. 2017 Feb 10;157:1862-1873 [PMID: 27987906]
  20. Carbohydr Polym. 2015 Nov 5;132:520-8 [PMID: 26256378]
  21. Int J Biol Macromol. 2016 Jan;82:830-6 [PMID: 26434526]
  22. Int J Biol Macromol. 2015;77:36-51 [PMID: 25748851]
  23. Plant Physiol Biochem. 2017 Jun;115:298-307 [PMID: 28412634]
  24. Sci Rep. 2017 Aug 29;7(1):9754 [PMID: 28851884]
  25. J Agric Food Chem. 2016 Aug 10;64(31):6148-55 [PMID: 27460439]
  26. Int J Mol Sci. 2019 Nov 16;20(22): [PMID: 31744157]
  27. 3 Biotech. 2018 Apr;8(4):193 [PMID: 29576999]
  28. Colloids Surf B Biointerfaces. 2017 Feb 1;150:141-152 [PMID: 27914250]
  29. Molecules. 2018 Jan 16;23(1): [PMID: 29337864]
  30. Carbohydr Polym. 2017 Jun 1;165:394-401 [PMID: 28363565]
  31. 3 Biotech. 2017 May;7(1):81 [PMID: 28500403]
  32. Int J Mol Sci. 2016 Jun 23;17(7): [PMID: 27347928]
  33. Trends Plant Sci. 2012 Feb;17(2):73-90 [PMID: 22209038]
  34. Curr Opin Colloid Interface Sci. 2020 Aug;48:121-136 [PMID: 33013179]
  35. Nanomaterials (Basel). 2020 Sep 24;10(10): [PMID: 32987697]
  36. Carbohydr Polym. 2016 Oct 20;151:321-325 [PMID: 27474573]
  37. Int J Biol Macromol. 2019 Apr 1;126:91-100 [PMID: 30557637]
  38. J Food Sci. 2012 May;77(5):E127-36 [PMID: 23163939]
  39. Int J Biol Macromol. 2015 Apr;75:346-53 [PMID: 25617841]
  40. Sci Rep. 2016 Jan 27;6:19768 [PMID: 26813942]

Word Cloud

Created with Highcharts 10.0.0ChNPschitosanChitosannanoparticlesgrowthcanpropertiesapplicationsbiologicalplantpromoteragentsectorvariousfieldsbiocompatibilitylowincludingagriculturewastewatertreatmentindustrysynthesisagriculturalAgriculturebackboneglobaleconomypopulationrelieslivelihoodbiodegradablematerialthusexplorednanoformreplacenon-biodegradabletoxiccompoundsappealinglikenon-toxicitybiodegradabilityallergenicmakingusefulseveraluniqueextensivelyappliedbioagentbiomedicalprocessesfungicidalwoundhealingscaffoldtissueengineeringFurthermorereportedanti-cancerousantifungalantioxidantactivitieseveninducesimmuneresponsehelpsmanagebioticabioticstressesalsofindapplicationhydratingagentscosmeticsfoodpapertextileadhesivedrug-deliveringmedicalwellbioimagingSincetoxicitynano-formulationusedcontrolledreleasefertilizerspesticidespromotersprecisionfarmingnovelapproachrecentdevelopmentscomprehensivelyreviewedmajorpointsreviewresourcesmodificationformulationincreasingapplicabilitymodifiedtypesdifferent:versatilemodernproductionBiologicalFertilizerFungicidalPlant

Similar Articles

Cited By