Arbitrary-Shape Dielectric Particles Interacting in the Linearized Poisson-Boltzmann Framework: An Analytical Treatment.

Sergii V Siryk, Walter Rocchia
Author Information
  1. Sergii V Siryk: CONCEPT Lab, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152, Genova, Italy. ORCID
  2. Walter Rocchia: CONCEPT Lab, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152, Genova, Italy. ORCID

Abstract

This work considers the interaction of two dielectric particles of arbitrary shape immersed into a solvent containing a dissociated salt and assuming that the linearized Poisson-Boltzmann equation holds. We establish a new general spherical re-expansion result which relies neither on the conventional condition that particle radii are small with respect to the characteristic separating distance between particles nor on any symmetry assumption. This is instrumental in calculating suitable expansion coefficients for the electrostatic potential inside and outside the objects and in constructing small-parameter asymptotic expansions for the potential, the total electrostatic energy, and forces in ascending order of Debye screening. This generalizes a recent result for the case of dielectric spheres to particles of arbitrary shape and builds for the first time a rigorous (exact at the Debye-Hückel level) analytical theory of electrostatic interactions of such particles at arbitrary distances. Numerical tests confirm that the proposed theory may also become especially useful in developing a new class of grid-free, fast, highly scalable solvers.

References

  1. J Colloid Interface Sci. 2011 Feb 1;354(1):417-20 [PMID: 21131001]
  2. J Comput Chem. 2021 Aug 15;42(22):1552-1560 [PMID: 34041777]
  3. Soft Matter. 2019 Mar 6;15(10):2125-2134 [PMID: 30762054]
  4. J Chem Phys. 2021 Sep 21;155(11):114114 [PMID: 34551534]
  5. J Chem Theory Comput. 2016 Aug 9;12(8):4052-66 [PMID: 27323006]
  6. J Comput Chem. 2021 Oct 5;42(26):1832-1860 [PMID: 34302374]
  7. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):013307 [PMID: 23410460]
  8. J Chem Theory Comput. 2006 May;2(3):541-55 [PMID: 26626662]
  9. Physica A. 2003 Aug 15;326(3-4):522-33 [PMID: 15759366]
  10. J Chem Phys. 2010 Oct 14;133(14):144908 [PMID: 20950042]
  11. J Phys Chem B. 2022 Jun 9;126(22):4112-4131 [PMID: 35623090]
  12. J Chem Theory Comput. 2017 Jun 13;13(6):2897-2914 [PMID: 28379697]
  13. Biophys Chem. 1996 Jan;57(2-3):189-203 [PMID: 17023339]
  14. J Comput Chem. 2017 Jun 5;38(15):1275-1282 [PMID: 27804145]
  15. J Chem Phys. 2014 Feb 21;140(7):074107 [PMID: 24559338]
  16. Sci Rep. 2022 Apr 5;12(1):5710 [PMID: 35383219]
  17. J Chem Phys. 2016 Aug 28;145(8):084103 [PMID: 27586900]
  18. J Chem Phys. 2010 Jul 14;133(2):024105 [PMID: 20632746]
  19. J Chem Phys. 2019 Jan 28;150(4):044901 [PMID: 30709241]
  20. J Comput Chem. 2002 Jan 15;23(1):128-37 [PMID: 11913378]
  21. Soft Matter. 2018 Jul 4;14(26):5480-5487 [PMID: 29926874]
  22. Soft Matter. 2014 Jan 28;10(4):566-77 [PMID: 24651922]
  23. Langmuir. 2004 Jun 8;20(12):4892-7 [PMID: 15984247]
  24. J Chem Phys. 2020 Jan 14;152(2):024121 [PMID: 31941309]
  25. Phys Rev E. 2020 Nov;102(5-1):052404 [PMID: 33327080]
  26. J Chem Phys. 2016 Nov 21;145(19):194307 [PMID: 27875888]
  27. J Phys Chem B. 2022 Sep 22;126(37):7104-7113 [PMID: 36101978]
  28. Protein Sci. 2018 Jan;27(1):112-128 [PMID: 28836357]
  29. J Colloid Interface Sci. 1999 Aug 15;216(2):329-347 [PMID: 10421741]
  30. Commun Comput Phys. 2013 Jan 1;13:61-89 [PMID: 23519863]
  31. Langmuir. 2013 Mar 26;29(12):3976-88 [PMID: 23442014]
  32. Phys Rev E. 2018 Feb;97(2-1):022611 [PMID: 29548099]
  33. J Chem Phys. 2020 Jul 28;153(4):044904 [PMID: 32752704]
  34. Phys Rev E. 2017 Jan;95(1-1):013212 [PMID: 28208425]
  35. Eur Phys J E Soft Matter. 2021 Oct 18;44(10):129 [PMID: 34661792]
  36. Phys Chem Chem Phys. 2016 Feb 17;18(8):5883-95 [PMID: 26841284]
  37. Phys Rev E. 2019 Jul;100(1-1):012401 [PMID: 31499794]
  38. J Phys Chem B. 2022 Jul 21;126(28):5231-5240 [PMID: 35819287]
  39. J Phys Chem B. 2022 Jun 23;126(24):4543-4554 [PMID: 35696448]
  40. J Colloid Interface Sci. 1997 Sep 15;193(2):273-85 [PMID: 9344528]
  41. J Colloid Interface Sci. 1998 Dec 15;208(2):529-542 [PMID: 9845697]
  42. Eur Phys J E Soft Matter. 2004 Dec;15(4):345-57 [PMID: 15570447]
  43. J Colloid Interface Sci. 2010 Oct 1;350(1):249-52 [PMID: 20663511]
  44. Eur J Med Chem. 2015 Feb 16;91:27-42 [PMID: 25193298]
  45. Soft Matter. 2022 Feb 9;18(6):1154-1173 [PMID: 35024721]
  46. Phys Rev E. 2017 Dec;96(6-1):062414 [PMID: 29347333]
  47. Curr Opin Struct Biol. 2000 Apr;10(2):153-9 [PMID: 10753808]
  48. J Am Chem Soc. 2009 Oct 21;131(41):15005-13 [PMID: 19778017]
  49. J Chem Theory Comput. 2016 Dec 13;12(12):5946-5959 [PMID: 27748599]
  50. J Chem Phys. 2013 Feb 21;138(7):074902 [PMID: 23445030]
  51. J Comput Chem. 2022 Apr 15;43(10):674-691 [PMID: 35201634]
  52. Soft Matter. 2022 Aug 31;18(34):6411-6418 [PMID: 35979741]
  53. J Chem Theory Comput. 2010 Jun 17;6(7):2214-2224 [PMID: 20711494]
  54. ACS Omega. 2022 Jul 19;7(30):26123-26136 [PMID: 35936397]
  55. Langmuir. 2022 May 17;38(19):6164-6173 [PMID: 35512818]

MeSH Term

Static Electricity
Solvents

Chemicals

Solvents

Word Cloud

Created with Highcharts 10.0.0particlesarbitraryelectrostaticdielectricshapePoisson-Boltzmannnewresultpotentialtheoryworkconsidersinteractiontwoimmersedsolventcontainingdissociatedsaltassuminglinearizedequationholdsestablishgeneralsphericalre-expansionreliesneitherconventionalconditionparticleradiismallrespectcharacteristicseparatingdistancesymmetryassumptioninstrumentalcalculatingsuitableexpansioncoefficientsinsideoutsideobjectsconstructingsmall-parameterasymptoticexpansionstotalenergyforcesascendingorderDebyescreeninggeneralizesrecentcasespheresbuildsfirsttimerigorousexactDebye-HückellevelanalyticalinteractionsdistancesNumericaltestsconfirmproposedmayalsobecomeespeciallyusefuldevelopingclassgrid-freefasthighlyscalablesolversArbitrary-ShapeDielectricParticlesInteractingLinearizedFramework:AnalyticalTreatment

Similar Articles

Cited By