Distance estimation in the goldfish ().

Adelaide Sibeaux, Cecilia Karlsson, Cait Newport, Theresa Burt de Perera
Author Information
  1. Adelaide Sibeaux: Department of Biology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, Oxfordshire OX1 3SZ, UK. ORCID
  2. Cecilia Karlsson: Department of Biology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, Oxfordshire OX1 3SZ, UK. ORCID
  3. Cait Newport: Department of Biology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, Oxfordshire OX1 3SZ, UK. ORCID
  4. Theresa Burt de Perera: Department of Biology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, Oxfordshire OX1 3SZ, UK. ORCID

Abstract

Neurophysiological advances have given us exciting insights into the systems responsible for spatial mapping in mammals. However, we are still lacking information on the evolution of these systems and whether the underlying mechanisms identified are universal across phyla, or specific to the species studied. Here we address these questions by exploring whether a species that is evolutionarily distant from mammals can perform a task central to mammalian spatial mapping-distance estimation. We developed a behavioural paradigm allowing us to test whether goldfish () can estimate distance and explored the behavioural mechanisms that underpin this ability. Fish were trained to swim a set distance within a narrow tank covered with a striped pattern. After changing the background pattern, we found that goldfish use the spatial frequency of their visual environment to estimate distance, doubling the spatial frequency of the background pattern resulted in a large overestimation of the swimming distance. We present robust evidence that goldfish can accurately estimate distance and show that they use local optic flow to do so. These results provide a compelling basis to use goldfish as a model system to interrogate the evolution of the mechanisms that underpin spatial cognition, from brain to behaviour.

Keywords

Associated Data

Dryad | 10.5061/dryad.0k6djhb2s
figshare | 10.6084/m9.figshare.c.6233236

References

  1. Behav Brain Res. 2010 Dec 25;214(2):480-7 [PMID: 20600353]
  2. J Exp Psychol Anim Behav Process. 2003 Jul;29(3):199-210 [PMID: 12884679]
  3. Rev Neurosci. 2006;17(1-2):3-15 [PMID: 16703939]
  4. Exp Brain Res. 2009 Mar;193(3):429-36 [PMID: 19030852]
  5. Brain Res. 1971 Nov;34(1):171-5 [PMID: 5124915]
  6. Exp Brain Res. 2000 Nov;135(1):12-21 [PMID: 11104123]
  7. Cognition. 2002 Sep;85(2):B51-9 [PMID: 12127704]
  8. J Comp Psychol. 2004 Jun;118(2):206-16 [PMID: 15250808]
  9. Curr Biol. 2009 Jan 13;19(1):25-9 [PMID: 19110426]
  10. Science. 2006 Jun 30;312(5782):1965-7 [PMID: 16809544]
  11. Biol Rev Camb Philos Soc. 1974 Nov;49(4):515-76 [PMID: 4616732]
  12. Annu Rev Anim Biosci. 2018 Feb 15;6:47-68 [PMID: 29447475]
  13. PLoS One. 2020 Mar 3;15(3):e0229608 [PMID: 32126075]
  14. Anim Cogn. 2021 May;24(3):395-406 [PMID: 33595750]
  15. Vision Res. 2001 Jan 15;41(2):213-9 [PMID: 11163855]
  16. Proc Biol Sci. 2013 Jul 31;280(1767):20131331 [PMID: 23902903]
  17. Animals (Basel). 2021 Jul 31;11(8): [PMID: 34438729]
  18. Exp Neurol. 1976 Apr;51(1):78-109 [PMID: 1261644]
  19. Nature. 2005 Aug 11;436(7052):801-6 [PMID: 15965463]
  20. Proc Biol Sci. 2022 Oct 12;289(1984):20221220 [PMID: 36476009]
  21. Vision Res. 2005 Jun;45(13):1679-92 [PMID: 15792843]
  22. J Fish Biol. 2012 Dec;81(7):2151-74 [PMID: 23252732]
  23. J Exp Biol. 2013 Aug 1;216(Pt 15):2967-73 [PMID: 23580729]
  24. J Comp Neurol. 2016 Feb 15;524(3):496-517 [PMID: 25982694]
  25. Behav Brain Res. 1996 Sep;79(1-2):193-200 [PMID: 8883830]
  26. Brain Struct Funct. 2017 Aug;222(6):2727-2742 [PMID: 28161726]
  27. J Exp Biol. 1997;200(Pt 19):2513-22 [PMID: 9320443]
  28. Science. 2000 Feb 4;287(5454):851-3 [PMID: 10657298]
  29. Psychol Sci. 2003 Mar;14(2):106-12 [PMID: 12661670]
  30. PLoS One. 2011 May 12;6(5):e19486 [PMID: 21589861]
  31. Comp Biochem Physiol A Mol Integr Physiol. 2006 Oct;145(2):145-51 [PMID: 16890467]
  32. Anim Cogn. 2012 Sep;15(5):861-70 [PMID: 22610461]
  33. Behav Brain Res. 2010 Jul 11;210(2):191-201 [PMID: 20178818]
  34. Sci Rep. 2020 Sep 8;10(1):14762 [PMID: 32901058]
  35. J Exp Biol. 1996;199(Pt 1):237-44 [PMID: 9317712]
  36. J Exp Biol. 2007 Jan;210(Pt 2):198-207 [PMID: 17210957]
  37. R Soc Open Sci. 2017 Dec 20;4(12):171440 [PMID: 29308267]
  38. Commun Biol. 2022 Oct 1;5(1):1045 [PMID: 36182985]
  39. J Exp Biol. 2014 Feb 1;217(Pt 3):395-401 [PMID: 24477612]
  40. Curr Biol. 2015 Apr 20;25(8):R317-21 [PMID: 25898097]
  41. J Neurosci. 2002 Apr 1;22(7):2894-903 [PMID: 11923454]

MeSH Term

Animals
Goldfish
Swimming
Mammals

Word Cloud

Created with Highcharts 10.0.0distancespatialgoldfishwhethermechanismscanestimationestimatepatternuseussystemsmammalsevolutionspeciesbehaviouralunderpinbackgroundfrequencyopticflowNeurophysiologicaladvancesgivenexcitinginsightsresponsiblemappingHoweverstilllackinginformationunderlyingidentifieduniversalacrossphylaspecificstudiedaddressquestionsexploringevolutionarilydistantperformtaskcentralmammalianmapping-distancedevelopedparadigmallowingtestexploredabilityFishtrainedswimsetwithinnarrowtankcoveredstripedchangingfoundvisualenvironmentdoublingresultedlargeoverestimationswimmingpresentrobustevidenceaccuratelyshowlocalresultsprovidecompellingbasismodelsysteminterrogatecognitionbrainbehaviourDistancenavigationteleostvision

Similar Articles

Cited By (6)