Multi-Modal Feature Fusion-Based Multi-Branch Classification Network for Pulmonary Nodule Malignancy Suspiciousness Diagnosis.

Haiying Yuan, Yanrui Wu, Mengfan Dai
Author Information
  1. Haiying Yuan: Beijing University of Technology, Beijing, China. yhyingcn@gmail.com. ORCID
  2. Yanrui Wu: Beijing University of Technology, Beijing, China.
  3. Mengfan Dai: Beijing University of Technology, Beijing, China.

Abstract

Detecting and identifying malignant nodules on chest computed tomography (CT) plays an important role in the early diagnosis and timely treatment of lung cancer, which can greatly reduce the number of deaths worldwide. In view of the existing methods in pulmonary nodule diagnosis, the importance of clinical radiological structured data (laboratory examination, radiological data) is ignored for the accuracy judgment of patients' condition. Hence, a multi-modal fusion multi-branch classification network is constructed to detect and classify pulmonary nodules in this work: (1) Radiological data of pulmonary nodules are used to construct structured features of length 9. (2) A multi-branch fusion-based effective attention mechanism network is designed for 3D CT Patch unstructured data, which uses 3D ECA-ResNet to dynamically adjust the extracted features. In addition, feature maps with different receptive fields from multi-layer are fully fused to obtain representative multi-scale unstructured features. (3) Multi-modal feature fusion of structured data and unstructured data is performed to distinguish benign and malignant nodules. Numerous experimental results show that this advanced network can effectively classify the benign and malignant pulmonary nodules for clinical diagnosis, which achieves the highest accuracy (94.89%), sensitivity (94.91%), and F1-score (94.65%) and lowest false positive rate (5.55%).

Keywords

References

  1. Int J Comput Assist Radiol Surg. 2019 Nov;14(11):1969-1979 [PMID: 31028657]
  2. Med Image Anal. 2017 Dec;42:1-13 [PMID: 28732268]
  3. CA Cancer J Clin. 2019 Jan;69(1):7-34 [PMID: 30620402]
  4. Sci Rep. 2018 Jun 18;8(1):9286 [PMID: 29915334]
  5. IEEE Trans Biomed Eng. 2014 Apr;61(4):1155-66 [PMID: 24658240]
  6. Int J Comput Assist Radiol Surg. 2017 Oct;12(10):1799-1808 [PMID: 28501942]
  7. Nat Med. 2019 Aug;25(8):1319 [PMID: 31253948]
  8. Med Phys. 2011 Feb;38(2):915-31 [PMID: 21452728]
  9. Med Image Anal. 2014 Feb;18(2):374-84 [PMID: 24434166]
  10. IEEE Trans Med Imaging. 2013 Apr;32(4):797-808 [PMID: 23340591]
  11. Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:686-689 [PMID: 30440489]
  12. Comput Biol Med. 2012 Nov;42(11):1110-21 [PMID: 23021776]
  13. IEEE Trans Biomed Eng. 2017 Jul;64(7):1558-1567 [PMID: 28113302]
  14. J Digit Imaging. 2015 Feb;28(1):99-115 [PMID: 25117512]
  15. J Digit Imaging. 2020 Aug;33(4):869-878 [PMID: 32285220]
  16. Comput Biol Med. 2017 Oct 1;89:530-539 [PMID: 28473055]
  17. J Digit Imaging. 2020 Aug;33(4):846-857 [PMID: 32095944]
  18. Med Phys. 2008 Aug;35(8):3453-61 [PMID: 18777905]
  19. Cancer. 2000 Dec 1;89(11 Suppl):2474-82 [PMID: 11147630]
  20. Phys Med Biol. 2019 Jun 20;64(12):125011 [PMID: 31141794]
  21. Med Image Anal. 2010 Jun;14(3):390-406 [PMID: 20346728]
  22. J Digit Imaging. 2020 Oct;33(5):1242-1256 [PMID: 32607905]

MeSH Term

Humans
Solitary Pulmonary Nodule
Lung Neoplasms
Multiple Pulmonary Nodules
Imaging, Three-Dimensional
Tomography, X-Ray Computed

Word Cloud

Created with Highcharts 10.0.0datanodulespulmonarynetwork3Dmalignantdiagnosisstructuredfusionclassificationfeaturesunstructuredfeature94CTcannoduleclinicalradiologicalaccuracymulti-branchclassifyECA-ResNetMulti-modalbenignPulmonaryDetectingidentifyingchestcomputedtomographyplaysimportantroleearlytimelytreatmentlungcancergreatlyreducenumberdeathsworldwideviewexistingmethodsimportancelaboratoryexaminationignoredjudgmentpatients'conditionHencemulti-modalconstructeddetectwork:1Radiologicalusedconstructlength92fusion-basedeffectiveattentionmechanismdesignedPatchusesdynamicallyadjustextractedadditionmapsdifferentreceptivefieldsmulti-layerfullyfusedobtainrepresentativemulti-scale3performeddistinguishNumerousexperimentalresultsshowadvancedeffectivelyachieveshighest89%sensitivity91%F1-score65%lowestfalsepositiverate555%Multi-ModalFeatureFusion-BasedMulti-BranchClassificationNetworkNoduleMalignancySuspiciousnessDiagnosisconvolutionalneuralMulti-branch

Similar Articles

Cited By