Potential application of a newly isolated phage BUCT609 infecting .

Ke Han, Yuqi Dong, Xiaoping An, Lihua Song, Mengzhe Li, Huahao Fan, Yigang Tong
Author Information
  1. Ke Han: College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
  2. Yuqi Dong: College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
  3. Xiaoping An: College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
  4. Lihua Song: College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
  5. Mengzhe Li: College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
  6. Huahao Fan: College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
  7. Yigang Tong: College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.

Abstract

() is widely distributed in nature and frequently causes nosocomial infections. In this work, the biological characteristics and genome of a new phage BUCT609 isolated from hospital sewage with strain No. 3015 as host was analyzed and its therapeutic effect was explored. It was observed by TEM that phage BUCT609 belongs to the with a 10 nm tail structure and a capsid with a diameter of about 50 nm. It has a short latent period (about 10 min) and its burst size is 382 PFU /cell when multiplicity of infection (MOI) is 0.01. Furthermore, it has a high survival rate in the environment with a pH range from 3 to 10 and temperature range from 4°C to 55°C. The complete genome of phage BUCT609 is linear double-stranded DNA of 43,145 bp in length, and the GC content is 58%. The genome sequence of phage BUCT609 shares <45% homology with other phages. No virulence genes and antibiotic resistance genes were found in bacteriophage BUCT609. animal experiments showed that the survival rate of mice infected with was significantly improved after the intranasal injection of phage BUCT609. Therefore, our study supports that phage BUCT609 could be used as a promising antimicrobial candidate for treating infections.

Keywords

References

  1. Appl Environ Microbiol. 2013 Sep;79(17):5112-20 [PMID: 23793624]
  2. Arch Virol. 2017 Dec;162(12):3843-3847 [PMID: 28812171]
  3. Front Microbiol. 2020 Jun 24;11:1358 [PMID: 32670234]
  4. BMC Res Notes. 2012 Oct 15;5:567 [PMID: 23069129]
  5. Foodborne Pathog Dis. 2021 Aug;18(8):574-581 [PMID: 32955931]
  6. Emerg Microbes Infect. 2020 Dec;9(1):771-774 [PMID: 32212918]
  7. Virus Res. 2020 Sep;286:198080 [PMID: 32615132]
  8. Genome Res. 2001 Jun;11(6):1095-9 [PMID: 11381035]
  9. Methods Mol Biol. 2020;2102:61-113 [PMID: 31989550]
  10. Antimicrob Agents Chemother. 2007 Aug;51(8):2765-73 [PMID: 17517843]
  11. Jundishapur J Microbiol. 2015 Aug 22;8(8):e23569 [PMID: 26468367]
  12. Protein Expr Purif. 2019 Aug;160:45-55 [PMID: 30954531]
  13. Curr Pharm Biotechnol. 2010 Jan;11(1):58-68 [PMID: 20214608]
  14. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  15. Mol Microbiol. 2021 Mar;115(3):345-355 [PMID: 32885520]
  16. Curr Microbiol. 2020 Oct;77(10):2813-2820 [PMID: 32588135]
  17. Subcell Biochem. 2017;83:225-270 [PMID: 28271479]
  18. Nucleic Acids Res. 2018 Nov 2;46(19):10474-10488 [PMID: 30169742]
  19. Viruses. 2020 Nov 06;12(11): [PMID: 33172115]
  20. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  21. Sci Rep. 2017 May 22;7(1):2223 [PMID: 28533535]
  22. Curr Opin Virol. 2018 Aug;31:66-73 [PMID: 30274853]
  23. Biotechnol Lett. 2007 Jul;29(7):995-1003 [PMID: 17364214]
  24. Antibiotics (Basel). 2020 Feb 11;9(2): [PMID: 32054067]
  25. Gene. 2002 Jan 9;282(1-2):33-41 [PMID: 11814675]
  26. J Virol. 2012 Oct;86(20):11392-3 [PMID: 22997416]
  27. Bioinformatics. 2017 Nov 01;33(21):3396-3404 [PMID: 29036289]
  28. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2013 May;42(3):331-6 [PMID: 23801623]
  29. Appl Environ Microbiol. 2005 Mar;71(3):1387-93 [PMID: 15746341]
  30. Viruses. 2021 Jun 26;13(7): [PMID: 34206836]
  31. Trends Microbiol. 2018 Jul;26(7):637-638 [PMID: 29754971]
  32. Methods Enzymol. 1994;235:29-39 [PMID: 8057901]
  33. Cell Mol Life Sci. 2020 Jan;77(1):35-59 [PMID: 31722068]
  34. Expert Rev Anti Infect Ther. 2020 Apr;18(4):335-347 [PMID: 32052662]
  35. Virus Genes. 2019 Apr;55(2):218-226 [PMID: 30627984]
  36. Methods Mol Biol. 2009;502:3-9 [PMID: 19082547]
  37. Arch Virol. 2021 Sep;166(9):2505-2520 [PMID: 34236511]
  38. Int J Mol Sci. 2020 Sep 01;21(17): [PMID: 32882851]
  39. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Aug;69(Pt 8):876-9 [PMID: 23908032]
  40. Viruses. 2018 Dec 05;10(12): [PMID: 30563034]
  41. J Clin Microbiol. 2012 Apr;50(4):1355-61 [PMID: 22238442]
  42. Adv Virus Res. 2019;103:33-70 [PMID: 30635077]
  43. Curr Microbiol. 2020 May;77(5):722-729 [PMID: 31912220]

Word Cloud

Created with Highcharts 10.0.0phageBUCT609genomeinfectionsisolatedsurvivalraterangegenesbacteriophagewidelydistributednaturefrequentlycausesnosocomialworkbiologicalcharacteristicsnewhospitalsewagestrain3015hostanalyzedtherapeuticeffectexploredobservedTEMbelongs10 nmtailstructurecapsiddiameter50 nmshortlatentperiod10 minburstsize382PFU/cellmultiplicityinfectionMOI001FurthermorehighenvironmentpH310temperature4°C55°Ccompletelineardouble-strandedDNA43145 bplengthGCcontent58%sequenceshares<45%homologyphagesvirulenceantibioticresistancefoundanimalexperimentsshowedmiceinfectedsignificantlyimprovedintranasalinjectionThereforestudysupportsusedpromisingantimicrobialcandidatetreatingPotentialapplicationnewlyinfectingStenotrophomonasmaltophiliagenomicanalysisthearpypodoviridae

Similar Articles

Cited By