Laser induced graphanized microfluidic devices.

Sanket Goel, Khairunnisa Amreen
Author Information
  1. Sanket Goel: MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India. ORCID
  2. Khairunnisa Amreen: MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India. ORCID

Abstract

With the advent of cyber-physical system-based automation and intelligence, the development of flexible and wearable devices has dramatically enhanced. Evidently, this has led to the thrust to realize standalone and sufficiently-self-powered miniaturized devices for a variety of sensing and monitoring applications. To this end, a range of aspects needs to be carefully and synergistically optimized. These include the choice of material, micro-reservoir to suitably place the analytes, integrable electrodes, detection mechanism, microprocessor/microcontroller architecture, signal-processing, software, etc. In this context, several researchers are working toward developing novel flexible devices having a micro-reservoir, both in flow-through and stationary phases, integrated with graphanized zones created by simple benchtop lasers. Various substrates, like different kinds of cloths, papers, and polymers, have been harnessed to develop laser-ablated graphene regions along with a micro-reservoir to aptly place various analytes to be sensed/monitored. Likewise, similar substrates have been utilized for energy harvesting by fuel cell or solar routes and supercapacitor-based energy storage. Overall, realization of a prototype is envisioned by integrating various sub-systems, including sensory, energy harvesting, energy storage, and IoT sub-systems, on a single mini-platform. In this work, the diversified work toward developing such prototypes will be showcased and current and future commercialization potential will be projected.

References

  1. ACS Nano. 2010 Apr 27;4(4):1790-8 [PMID: 20373745]
  2. Adv Mater. 2016 Feb 3;28(5):838-45 [PMID: 26632264]
  3. Small. 2018 Sep;14(36):e1802350 [PMID: 30085386]
  4. ACS Appl Mater Interfaces. 2018 Nov 14;10(45):39124-39133 [PMID: 30284450]
  5. Adv Mater. 2017 Oct;29(37): [PMID: 28737226]
  6. ACS Sens. 2017 May 26;2(5):616-620 [PMID: 28723173]
  7. IEEE Trans Nanobioscience. 2021 Jan;20(1):79-85 [PMID: 33166255]
  8. Sci Rep. 2016 Jun 16;6:27975 [PMID: 27306706]
  9. Sensors (Basel). 2020 Jul 30;20(15): [PMID: 32751740]
  10. Biosens Bioelectron. 2021 Dec 1;193:113606 [PMID: 34507206]
  11. IEEE Trans Nanobioscience. 2022 Jul;21(3):341-346 [PMID: 33974544]
  12. Adv Mater. 2017 Jul;29(27): [PMID: 28497883]
  13. ACS Nano. 2015 Jun 23;9(6):5868-75 [PMID: 25978090]
  14. Luminescence. 2022 Feb;37(2):357-365 [PMID: 34931738]
  15. Science. 2015 Jul 3;349(6243):54-8 [PMID: 26138971]
  16. Biosens Bioelectron. 2020 Feb 15;150:111896 [PMID: 31784311]
  17. Biomicrofluidics. 2017 Aug 30;11(4):041501 [PMID: 28936274]
  18. Sci Rep. 2019 Dec 27;9(1):19862 [PMID: 31882767]
  19. Science. 2009 Feb 6;323(5915):760-4 [PMID: 19197058]
  20. ACS Nano. 2019 Mar 26;13(3):3474-3482 [PMID: 30848881]
  21. Biomicrofluidics. 2014 Oct 16;8(5):052113 [PMID: 25584110]
  22. Angew Chem Int Ed Engl. 2007;46(8):1318-20 [PMID: 17211899]
  23. J Urol. 2007 Jan;177(1):50-2 [PMID: 17161998]
  24. IEEE Trans Nanobioscience. 2022 Jan;21(1):97-104 [PMID: 34170829]
  25. Small. 2018 Jan;14(1): [PMID: 29148212]
  26. Sci Total Environ. 2020 Apr 20;714:136687 [PMID: 31978771]
  27. ACS Nano. 2015 Sep 22;9(9):9244-51 [PMID: 26284900]
  28. Biomicrofluidics. 2019 Nov 07;13(6):064107 [PMID: 31737156]
  29. Lab Chip. 2012 Apr 7;12(7):1224-37 [PMID: 22318426]
  30. ACS Nano. 2022 Jan 25;16(1):15-28 [PMID: 34812606]
  31. Angew Chem Int Ed Engl. 2017 Nov 20;56(47):15113-15117 [PMID: 28984020]
  32. Nat Commun. 2014 Dec 10;5:5714 [PMID: 25493446]
  33. Biosens Bioelectron. 2018 Jun 1;107:184-191 [PMID: 29459331]
  34. Trends Biotechnol. 2014 Jul;32(7):347-50 [PMID: 24954000]
  35. ACS Appl Mater Interfaces. 2019 Jun 26;11(25):22531-22542 [PMID: 31192579]
  36. Nanotechnology. 2020 Aug 04;31(42):425504 [PMID: 32748804]
  37. Sensors (Basel). 2019 Nov 08;19(22): [PMID: 31717359]
  38. ACS Nano. 2018 Feb 27;12(2):1083-1088 [PMID: 29328622]
  39. ACS Appl Mater Interfaces. 2019 Feb 13;11(6):6166-6173 [PMID: 30648868]
  40. ACS Nano. 2018 Mar 27;12(3):2176-2183 [PMID: 29436816]
  41. ACS Sens. 2020 Jul 24;5(7):1900-1911 [PMID: 32348124]
  42. Biosens Bioelectron. 2018 Jul 1;110:89-96 [PMID: 29602035]
  43. Anal Chem. 1998 Dec 1;70(23):4974-84 [PMID: 21644679]
  44. ACS Appl Mater Interfaces. 2020 Feb 26;12(8):9710-9717 [PMID: 31992041]
  45. Nature. 2014 Mar 13;507(7491):181-9 [PMID: 24622198]
  46. Adv Mater. 2018 May;30(21):e1707319 [PMID: 29611237]
  47. Nat Commun. 2017 Feb 24;8:14579 [PMID: 28232739]
  48. Biosensors (Basel). 2018 Apr 24;8(2): [PMID: 29695046]
  49. Lab Chip. 2022 Sep 27;22(19):3721-3733 [PMID: 36043879]
  50. Lab Chip. 2012 Sep 21;12(18):3267-71 [PMID: 22875258]
  51. Biomicrofluidics. 2013 Oct 29;7(5):51502 [PMID: 24273628]
  52. Science. 1993 Aug 13;261(5123):895-7 [PMID: 17783736]
  53. Anal Chem. 2003 Dec 1;75(23):6544-54 [PMID: 14640726]
  54. Biomicrofluidics. 2013 Sep 06;7(5):51501 [PMID: 24086179]
  55. Chem Commun (Camb). 2019 Apr 23;55(34):4945-4948 [PMID: 30957826]
  56. Angew Chem Int Ed Engl. 1998 Mar 16;37(5):550-575 [PMID: 29711088]
  57. Nanoscale. 2016 Dec 8;8(48):20090-20095 [PMID: 27896345]
  58. ACS Appl Mater Interfaces. 2015 Mar 4;7(8):4463-70 [PMID: 25686021]
  59. Lab Chip. 2010 May 21;10(10):1324-7 [PMID: 20445888]
  60. Adv Mater. 2019 Jan;31(1):e1803621 [PMID: 30368919]
  61. Biomicrofluidics. 2016 Feb 23;10(1):011910 [PMID: 26958097]

Word Cloud

Created with Highcharts 10.0.0devicesenergymicro-reservoirflexibleplaceanalytestowarddevelopinggraphanizedsubstratesvariousharvestingstoragesub-systemsworkwilladventcyber-physicalsystem-basedautomationintelligencedevelopmentwearabledramaticallyenhancedEvidentlyledthrustrealizestandalonesufficiently-self-poweredminiaturizedvarietysensingmonitoringapplicationsendrangeaspectsneedscarefullysynergisticallyoptimizedincludechoicematerialsuitablyintegrableelectrodesdetectionmechanismmicroprocessor/microcontrollerarchitecturesignal-processingsoftwareetccontextseveralresearchersworkingnovelflow-throughstationaryphasesintegratedzonescreatedsimplebenchtoplasersVariouslikedifferentkindsclothspaperspolymersharnesseddeveloplaser-ablatedgrapheneregionsalongaptlysensed/monitoredLikewisesimilarutilizedfuelcellsolarroutessupercapacitor-basedOverallrealizationprototypeenvisionedintegratingincludingsensoryIoTsinglemini-platformdiversifiedprototypesshowcasedcurrentfuturecommercializationpotentialprojectedLaserinducedmicrofluidic

Similar Articles

Cited By