TVIR: a comprehensive vegetable information resource database for comparative and functional genomic studies.

Tong Yu, Xiao Ma, Zhuo Liu, Xuehuan Feng, Zhiyuan Wang, Jun Ren, Rui Cao, Yingchao Zhang, Fulei Nie, Xiaoming Song
Author Information
  1. Tong Yu: School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China.
  2. Xiao Ma: School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China.
  3. Zhuo Liu: School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China.
  4. Xuehuan Feng: Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
  5. Zhiyuan Wang: School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China.
  6. Jun Ren: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
  7. Rui Cao: School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China.
  8. Yingchao Zhang: School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China.
  9. Fulei Nie: School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China.
  10. Xiaoming Song: School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China.

Abstract

Vegetables are an indispensable part of the daily diet of humans. Therefore, it is vital to systematically study the genomic data of vegetables and build a platform for data sharing and analysis. In this study, a comprehensive platform for vegetables with a user-friendly Web interface-The Vegetable Information Resource (TVIR, http://tvir.bio2db.com)-was built based on the genomes of 59 vegetables. TVIR database contains numerous important functional genes, including 5215 auxin genes, 2437 anthocyanin genes, 15 002 flowering genes, 79 830 resistance genes, and 2639 glucosinolate genes of 59 vegetables. In addition, 2597 N6-methyladenosine (m6A) genes were identified, including 513 writers, 1058 erasers, and 1026 readers. A total of 2 101 501 specific clustered regularly interspaced short palindromic repeat (CRISPR) guide sequences and 17 377 miRNAs were detected and deposited in TVIR database. Information on gene synteny, duplication, and orthologs is also provided for 59 vegetable species. TVIR database contains 2 346 850 gene annotations by the Swiss-Prot, TrEMBL, Gene Ontology (GO), Pfam, and Non-redundant (Nr) databases. Synteny, Primer Design, Blast, and JBrowse tools are provided to facilitate users in conducting comparative genomic analyses. This is the first large-scale collection of vegetable genomic data and bioinformatic analysis. All genome and gene sequences, annotations, and bioinformatic results can be easily downloaded from TVIR. Furthermore, transcriptome data of 98 vegetables have been collected and collated, and can be searched by species, tissues, or different growth stages. TVIR is expected to become a key hub for vegetable research globally. The database will be updated with newly assembled vegetable genomes and comparative genomic studies in the future.

References

  1. G3 (Bethesda). 2021 Sep 6;11(9): [PMID: 34544132]
  2. Nucleic Acids Res. 2019 Jan 8;47(D1):D155-D162 [PMID: 30423142]
  3. Mol Plant. 2021 Dec 6;14(12):2032-2055 [PMID: 34384905]
  4. Int J Mol Sci. 2015 Aug 14;16(8):19248-90 [PMID: 26287177]
  5. Hortic Res. 2021 Aug 5;8(1):188 [PMID: 34354050]
  6. Hortic Res. 2021 Aug 5;8(1):189 [PMID: 34354044]
  7. Hortic Res. 2020 Apr 1;7:55 [PMID: 32257241]
  8. Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489 [PMID: 33237286]
  9. Nucleic Acids Res. 2015 Jan;43(Database issue):D1036-41 [PMID: 25428362]
  10. Plant J. 2020 Jul;103(2):726-741 [PMID: 32270526]
  11. Algorithms Mol Biol. 2011 Nov 24;6:26 [PMID: 22115189]
  12. Hortic Res. 2019 Oct 8;6:112 [PMID: 31645966]
  13. Nucleic Acids Res. 2012 Apr;40(7):e49 [PMID: 22217600]
  14. Hortic Res. 2021 Mar 1;8(1):45 [PMID: 33642576]
  15. Hortic Res. 2014 May 21;1:14024 [PMID: 26504539]
  16. Plant Physiol. 2021 May 27;186(1):388-406 [PMID: 33599732]
  17. Plant J. 2021 Jul;107(2):579-596 [PMID: 33964091]
  18. DNA Res. 2020 Apr 01;27(2): [PMID: 32426809]
  19. BMC Genomics. 2016 Nov 2;17(1):852 [PMID: 27806688]
  20. Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11872-7 [PMID: 22753475]
  21. Nucleic Acids Res. 2022 Jan 7;50(D1):D1040-D1045 [PMID: 34792158]
  22. BMC Genomics. 2015 Apr 20;16:328 [PMID: 25908429]
  23. Int J Mol Sci. 2018 Nov 18;19(11): [PMID: 30453667]
  24. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  25. Nat Plants. 2020 Jan;6(1):34-45 [PMID: 31932676]
  26. Mol Plant. 2020 Sep 7;13(9):1328-1339 [PMID: 32730994]
  27. Nat Plants. 2020 Mar;6(3):215-222 [PMID: 32094642]
  28. BMC Genomics. 2013 Aug 23;14:573 [PMID: 23972083]
  29. Nat Plants. 2021 Jun;7(6):757-765 [PMID: 34045706]
  30. Nat Commun. 2020 Jan 24;11(1):492 [PMID: 31980615]
  31. Genome Biol. 2021 May 31;22(1):166 [PMID: 34059118]
  32. Nat Commun. 2017 Apr 12;8:14953 [PMID: 28401891]
  33. Plant J. 2019 Sep;99(6):1242-1253 [PMID: 31104348]
  34. Nat Genet. 2016 Oct;48(10):1225-32 [PMID: 27595476]
  35. Nat Genet. 2019 Jun;51(6):1044-1051 [PMID: 31086351]
  36. Nucleic Acids Res. 2019 Jan 8;47(D1):D1128-D1136 [PMID: 30321383]
  37. Plant Biotechnol J. 2018 Jun;16(6):1161-1171 [PMID: 29112324]
  38. Plant Biotechnol J. 2021 Apr;19(4):731-744 [PMID: 33095976]
  39. BMC Bioinformatics. 2014;15 Suppl 16:S15 [PMID: 25521810]
  40. Nat Genet. 2011 Aug 28;43(10):1035-9 [PMID: 21873998]
  41. Nucleic Acids Res. 2021 Jan 8;49(D1):D325-D334 [PMID: 33290552]
  42. Hortic Res. 2021 Jun 1;8(1):122 [PMID: 34059664]
  43. Nucleic Acids Res. 2021 Jan 8;49(D1):D10-D17 [PMID: 33095870]
  44. Plant Biotechnol J. 2021 Dec;19(12):2488-2500 [PMID: 34310022]
  45. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  46. Science. 2014 Aug 22;345(6199):950-3 [PMID: 25146293]
  47. Nucleic Acids Res. 2016 Jan 4;44(D1):D1167-71 [PMID: 26476447]
  48. Nat Genet. 2009 Dec;41(12):1275-81 [PMID: 19881527]
  49. Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:4.10.1-4.10.14 [PMID: 19274634]
  50. Plant Biotechnol J. 2020 Jun;18(6):1444-1456 [PMID: 31799788]
  51. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W233-8 [PMID: 20460454]
  52. Plant Physiol. 2022 Aug 29;190(1):226-237 [PMID: 35670735]
  53. Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419 [PMID: 33125078]
  54. Gene. 2011 Nov 10;487(2):135-42 [PMID: 21835231]
  55. Database (Oxford). 2019 Jan 1;2019: [PMID: 30722041]
  56. Nucleic Acids Res. 2022 Jan 7;50(D1):D1432-D1441 [PMID: 34755871]
  57. Nat Plants. 2017 Sep;3(9):696-703 [PMID: 28827752]
  58. J Biotechnol. 2021 Jun 10;333:67-76 [PMID: 33932500]
  59. Mol Plant. 2019 Apr 1;12(4):506-520 [PMID: 30630074]
  60. Plant Biotechnol J. 2021 Oct;19(10):1895-1897 [PMID: 34260132]
  61. Plant Biotechnol J. 2019 Jul;17(7):1194-1208 [PMID: 31070865]
  62. Nat Commun. 2017 Nov 2;8(1):1279 [PMID: 29093472]
  63. Hortic Res. 2020 Sep 21;7(1):153 [PMID: 33024567]
  64. Mol Plant. 2017 Oct 9;10(10):1293-1306 [PMID: 28917590]
  65. Hortic Res. 2022 Feb 19;: [PMID: 35184193]
  66. Nat Commun. 2016 Nov 11;7:13390 [PMID: 27834372]

Links to CNCB-NGDC Resources

Database Commons: DBC008420 (TVIR)

Word Cloud

Created with Highcharts 10.0.0genesTVIRgenomicvegetablesdatabasevegetabledata59genecomparativestudyplatformanalysiscomprehensiveInformationgenomescontainsfunctionalincludingsequencesprovidedspeciesannotationsbioinformaticcanstudiesVegetablesindispensablepartdailydiethumansThereforevitalsystematicallybuildsharinguser-friendlyWebinterface-TheVegetableResourcehttp://tvirbio2dbcom-wasbuiltbasednumerousimportant5215auxin2437anthocyanin15 002flowering79 830resistance2639glucosinolateaddition2597N6-methyladenosinem6Aidentified513writers1058erasers1026readerstotal2 101 501specificclusteredregularlyinterspacedshortpalindromicrepeatCRISPRguide17 377miRNAsdetecteddepositedsyntenyduplicationorthologsalso2 346 850Swiss-ProtTrEMBLGeneOntologyGOPfamNon-redundantNrdatabasesSyntenyPrimerDesignBlastJBrowsetoolsfacilitateusersconductinganalysesfirstlarge-scalecollectiongenomeresultseasilydownloadedFurthermoretranscriptome98collectedcollatedsearchedtissuesdifferentgrowthstagesexpectedbecomekeyhubresearchgloballywillupdatednewlyassembledfutureTVIR:informationresource

Similar Articles

Cited By