Interpretable and tractable models of transcriptional noise for the rational design of single-molecule quantification experiments.

Gennady Gorin, John J Vastola, Meichen Fang, Lior Pachter
Author Information
  1. Gennady Gorin: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA. ORCID
  2. John J Vastola: Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA. ORCID
  3. Meichen Fang: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA. ORCID
  4. Lior Pachter: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA. lpachter@caltech.edu. ORCID

Abstract

The question of how cell-to-cell differences in transcription rate affect RNA count distributions is fundamental for understanding biological processes underlying transcription. Answering this question requires quantitative models that are both interpretable (describing concrete biophysical phenomena) and tractable (amenable to mathematical analysis). This enables the identification of experiments which best discriminate between competing hypotheses. As a proof of principle, we introduce a simple but flexible class of models involving a continuous stochastic transcription rate driving a discrete RNA transcription and splicing process, and compare and contrast two biologically plausible hypotheses about transcription rate variation. One assumes variation is due to DNA experiencing mechanical strain, while the other assumes it is due to regulator number fluctuations. We introduce a framework for numerically and analytically studying such models, and apply Bayesian model selection to identify candidate genes that show signatures of each model in single-cell transcriptomic data from mouse glutamatergic neurons.

References

  1. J R Soc Interface. 2021 May;18(178):20210274 [PMID: 34034535]
  2. Br J Pharmacol. 2007 Sep;152(1):38-52 [PMID: 17533416]
  3. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17454-9 [PMID: 23064634]
  4. Mol Cell. 2012 Feb 24;45(4):483-93 [PMID: 22365828]
  5. Cell. 2008 Oct 17;135(2):216-26 [PMID: 18957198]
  6. Nature. 2019 Feb;566(7745):496-502 [PMID: 30787437]
  7. Nat Biotechnol. 2021 Jul;39(7):813-818 [PMID: 33795888]
  8. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7024-7 [PMID: 2823250]
  9. Nat Struct Mol Biol. 2011 Jan;18(1):27-34 [PMID: 21131977]
  10. Phys Rev E. 2020 Mar;101(3-1):032417 [PMID: 32289899]
  11. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 1):061910 [PMID: 23367979]
  12. Bioinformatics. 2019 Nov 1;35(21):4472-4473 [PMID: 31073610]
  13. Nature. 2018 Aug;560(7719):494-498 [PMID: 30089906]
  14. Annu Rev Phys Chem. 2007;58:35-55 [PMID: 17037977]
  15. Biophys J. 2022 Mar 15;121(6):1056-1069 [PMID: 35143775]
  16. J R Soc Interface. 2017 Jan;14(126): [PMID: 28053113]
  17. Wiley Interdiscip Rev RNA. 2017 Mar;8(2): [PMID: 27873472]
  18. BMC Syst Biol. 2015 Mar 21;9:16 [PMID: 25888718]
  19. PeerJ Comput Sci. 2023 Sep 1;9:e1516 [PMID: 37705656]
  20. Phys Rev E. 2020 Aug;102(2-1):022409 [PMID: 32942485]
  21. PLoS Comput Biol. 2019 Jan 15;15(1):e1006365 [PMID: 30645589]
  22. Biophys J. 2012 Sep 5;103(5):1087-96 [PMID: 23009859]
  23. Complexity. 2020;2020: [PMID: 32982137]
  24. J Chem Phys. 2016 Aug 21;145(7):074101 [PMID: 27544081]
  25. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  26. Nat Commun. 2022 Dec 9;13(1):7620 [PMID: 36494337]
  27. Phys Rev Lett. 2020 Mar 13;124(10):108101 [PMID: 32216388]
  28. Nat Biotechnol. 2019 May;37(5):547-554 [PMID: 30936559]
  29. Genome Biol. 2018 Mar 29;19(1):46 [PMID: 29598823]
  30. PLoS Comput Biol. 2022 Sep 12;18(9):e1010492 [PMID: 36094956]
  31. J Math Biol. 2007 Jan;54(1):1-26 [PMID: 16953443]
  32. J Math Biol. 2012 Apr;64(5):829-54 [PMID: 21656009]
  33. Proc Natl Acad Sci U S A. 2021 Mar 16;118(11): [PMID: 33836610]
  34. Cell. 2018 Jul 12;174(2):363-376.e16 [PMID: 29887381]
  35. Biophys Rep (N Y). 2022 Dec 27;3(1):100097 [PMID: 36660179]
  36. Nat Methods. 2020 Mar;17(3):261-272 [PMID: 32015543]
  37. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8614-9 [PMID: 11438714]
  38. Science. 2012 Apr 13;336(6078):183-7 [PMID: 22499939]
  39. Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4682-4692 [PMID: 32071224]
  40. Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7533-7538 [PMID: 29959206]
  41. Biophys J. 2020 Sep 1;119(5):1002-1014 [PMID: 32814062]
  42. J Math Biol. 2021 Oct 11;83(5):48 [PMID: 34635944]
  43. PLoS Comput Biol. 2014 Dec 04;10(12):e1003942 [PMID: 25473849]
  44. Bioinformatics. 2007 Nov 1;23(21):2881-7 [PMID: 17881408]
  45. Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):13983-13988 [PMID: 27911801]
  46. Science. 2013 Dec 6;342(6163):1188-93 [PMID: 24311680]
  47. Nat Rev Genet. 2018 Aug;19(8):518-529 [PMID: 29748575]
  48. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  49. Nature. 2021 Oct;598(7879):195-199 [PMID: 34616073]
  50. J Med Chem. 2018 Feb 8;61(3):638-649 [PMID: 28745501]
  51. Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12167-72 [PMID: 21730172]
  52. Science. 2002 Aug 16;297(5584):1183-6 [PMID: 12183631]
  53. Cell. 2015 Dec 17;163(7):1596-610 [PMID: 26687353]
  54. PLoS Comput Biol. 2014 Jun 12;10(6):e1003650 [PMID: 24922483]
  55. Nature. 2021 Oct;598(7879):103-110 [PMID: 34616066]
  56. Cell. 2005 Dec 16;123(6):1025-36 [PMID: 16360033]
  57. Eur J Pharmacol. 2009 Dec 25;625(1-3):90-100 [PMID: 19835861]
  58. Math Financ Econ. 2021;15(4):747-773 [PMID: 38624584]
  59. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):012713 [PMID: 24580263]
  60. J Chem Phys. 2013 May 7;138(17):170901 [PMID: 23656106]
  61. Phys Rev Lett. 2017 Jun 30;118(26):268101 [PMID: 28707908]
  62. Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19490-19499 [PMID: 31501331]
  63. Mol Syst Biol. 2019 Jun 19;15(6):e8746 [PMID: 31217225]
  64. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12795-800 [PMID: 12237400]
  65. Nat Methods. 2020 Feb;17(2):147-154 [PMID: 31907445]
  66. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 1):031911 [PMID: 19391975]
  67. Nucleic Acids Res. 2018 Jul 6;46(12):5924-5934 [PMID: 29860397]
  68. Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2734-9 [PMID: 25730859]
  69. FEBS Lett. 2017 Aug;591(15):2213-2225 [PMID: 28524227]

Grants

  1. U19 MH114830/NIMH NIH HHS
  2. U19MH114830/U.S. Department of Health & Human Services | National Institutes of Health (NIH)
  3. DMS 1562078/National Science Foundation (NSF)

MeSH Term

Mice
Animals
Stochastic Processes
Bayes Theorem
RNA
Gene Expression Profiling
Models, Biological

Chemicals

RNA

Word Cloud

Created with Highcharts 10.0.0transcriptionmodelsratequestionRNAtractableexperimentshypothesesintroducevariationassumesduemodelcell-to-celldifferencesaffectcountdistributionsfundamentalunderstandingbiologicalprocessesunderlyingAnsweringrequiresquantitativeinterpretabledescribingconcretebiophysicalphenomenaamenablemathematicalanalysisenablesidentificationbestdiscriminatecompetingproofprinciplesimpleflexibleclassinvolvingcontinuousstochasticdrivingdiscretesplicingprocesscomparecontrasttwobiologicallyplausibleOneDNAexperiencingmechanicalstrainregulatornumberfluctuationsframeworknumericallyanalyticallystudyingapplyBayesianselectionidentifycandidategenesshowsignaturessingle-celltranscriptomicdatamouseglutamatergicneuronsInterpretabletranscriptionalnoiserationaldesignsingle-moleculequantification

Similar Articles

Cited By